Advancing High-Performance Mixed Matrix Membrane via Magnetically Aligned Polycrystalline Co0.5Ni0.5FeCrO4 Magnetic Spinel Nanoparticles for Effective H-2/CO2 and O-2/N-2 Gas Separation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924957" target="_blank" >RIV/60461373:22310/22:43924957 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/22:43924957
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/admi.202201351" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/admi.202201351</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/admi.202201351" target="_blank" >10.1002/admi.202201351</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advancing High-Performance Mixed Matrix Membrane via Magnetically Aligned Polycrystalline Co0.5Ni0.5FeCrO4 Magnetic Spinel Nanoparticles for Effective H-2/CO2 and O-2/N-2 Gas Separation
Popis výsledku v původním jazyce
Gas separation matrix membranes (MMMs) benefit from a combination of a polymer matrix and heterogeneous solid or liquid (nano) additives. However, improvements in mechanical strength of membrane permeability or gas selectivity are often overbalanced by morphological deficiencies, such as aggregation or sedimentation of the nanofiller, due to poor control at the nano level. Here, the controlled orthogonal magnetic field deposition of self-invented spinel Co0.5Ni0.5FeCrO4 magnetic nanoparticles (SMNPs) into the cellulose triacetate (CTA) results in well-defined gas transport pathways in the membrane and enhances gas separation performances by expanding the effective-selective surface area. Contrariwise, the structural observation of the fabricated MMMs in the absence of the magnetic field shows precipitation and aggregation of the particles at the bottom of the membrane. The permeability and selectivity of the H-2/CO2 and O-2/N-2 gas pairs surpass the 2008 and 2015 Robeson upper bounds for the controlled embedding of the SMNPs series (up to 15 wt.%) while the neat CTA or MMM with a random non-controlled SMNPs distribution exhibits substantially lower permeability and selectivity values. This work contributes to the development of magnetic field casting as a facile technique that advances the gas transport properties of MMMs, efficient for air separation.
Název v anglickém jazyce
Advancing High-Performance Mixed Matrix Membrane via Magnetically Aligned Polycrystalline Co0.5Ni0.5FeCrO4 Magnetic Spinel Nanoparticles for Effective H-2/CO2 and O-2/N-2 Gas Separation
Popis výsledku anglicky
Gas separation matrix membranes (MMMs) benefit from a combination of a polymer matrix and heterogeneous solid or liquid (nano) additives. However, improvements in mechanical strength of membrane permeability or gas selectivity are often overbalanced by morphological deficiencies, such as aggregation or sedimentation of the nanofiller, due to poor control at the nano level. Here, the controlled orthogonal magnetic field deposition of self-invented spinel Co0.5Ni0.5FeCrO4 magnetic nanoparticles (SMNPs) into the cellulose triacetate (CTA) results in well-defined gas transport pathways in the membrane and enhances gas separation performances by expanding the effective-selective surface area. Contrariwise, the structural observation of the fabricated MMMs in the absence of the magnetic field shows precipitation and aggregation of the particles at the bottom of the membrane. The permeability and selectivity of the H-2/CO2 and O-2/N-2 gas pairs surpass the 2008 and 2015 Robeson upper bounds for the controlled embedding of the SMNPs series (up to 15 wt.%) while the neat CTA or MMM with a random non-controlled SMNPs distribution exhibits substantially lower permeability and selectivity values. This work contributes to the development of magnetic field casting as a facile technique that advances the gas transport properties of MMMs, efficient for air separation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials Interfaces
ISSN
2196-7350
e-ISSN
2196-7350
Svazek periodika
9
Číslo periodika v rámci svazku
35
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
2201351
Kód UT WoS článku
000879609300001
EID výsledku v databázi Scopus
2-s2.0-85141545896