Dissolution Kinetics of Meloxicam Formulations Co-Milled with Sodium Lauryl Sulfate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43925587" target="_blank" >RIV/60461373:22310/22:43925587 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1999-4923/14/10/2173" target="_blank" >https://www.mdpi.com/1999-4923/14/10/2173</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pharmaceutics14102173" target="_blank" >10.3390/pharmaceutics14102173</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dissolution Kinetics of Meloxicam Formulations Co-Milled with Sodium Lauryl Sulfate
Popis výsledku v původním jazyce
Meloxicam (MLX) is a poorly soluble drug exhibiting strong hydrophobicity. This combination of properties makes dissolution enhancement by particle size reduction ineffective; therefore, combined formulation approaches are required. Various approaches were investigated in this study, including milling, solid dispersions, and self-emulsified lipid formulations. Whereas milling studies of MLX and its co-milling with various polymers have been reported in recent literature, this study is focused on investigating the dissolution kinetics of particulate formulations obtained by co-milling MLX with sodium lauryl sulfate (SLS) in a planetary ball mill with 5-25 wt.% SLS content. The effects of milling time and milling ball size were also investigated. No significant reduction in drug crystallinity was observed under the investigated milling conditions according to XRD data. For the dissolution study, we used an open-loop USP4 dissolution apparatus, and recorded dissolution profiles were fitted according to the Weibull model. The Weibull parameters and a novel criterion-surface utilization factor-were used to evaluate and discuss the drug release from the perspective of drug particle surface changes throughout the dissolution process. The most effective co-milling results were achieved using smaller balls (2 mm), with a co-milling time of up to 15 min SLS content of up to 15 wt.% to increase the dissolution rate by approximately 100 times relative to the physical mixture reference. The results suggest that for hydrophobic drugs, particle performance during dissolution is very sensitive to surface properties and not only to particle size. Co-milling with SLS prepares the surface for faster drug release than that achieved with direct mixing.
Název v anglickém jazyce
Dissolution Kinetics of Meloxicam Formulations Co-Milled with Sodium Lauryl Sulfate
Popis výsledku anglicky
Meloxicam (MLX) is a poorly soluble drug exhibiting strong hydrophobicity. This combination of properties makes dissolution enhancement by particle size reduction ineffective; therefore, combined formulation approaches are required. Various approaches were investigated in this study, including milling, solid dispersions, and self-emulsified lipid formulations. Whereas milling studies of MLX and its co-milling with various polymers have been reported in recent literature, this study is focused on investigating the dissolution kinetics of particulate formulations obtained by co-milling MLX with sodium lauryl sulfate (SLS) in a planetary ball mill with 5-25 wt.% SLS content. The effects of milling time and milling ball size were also investigated. No significant reduction in drug crystallinity was observed under the investigated milling conditions according to XRD data. For the dissolution study, we used an open-loop USP4 dissolution apparatus, and recorded dissolution profiles were fitted according to the Weibull model. The Weibull parameters and a novel criterion-surface utilization factor-were used to evaluate and discuss the drug release from the perspective of drug particle surface changes throughout the dissolution process. The most effective co-milling results were achieved using smaller balls (2 mm), with a co-milling time of up to 15 min SLS content of up to 15 wt.% to increase the dissolution rate by approximately 100 times relative to the physical mixture reference. The results suggest that for hydrophobic drugs, particle performance during dissolution is very sensitive to surface properties and not only to particle size. Co-milling with SLS prepares the surface for faster drug release than that achieved with direct mixing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30104 - Pharmacology and pharmacy
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHARMACEUTICS
ISSN
1999-4923
e-ISSN
1999-4923
Svazek periodika
14
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
nestrankovano
Kód UT WoS článku
000873471300001
EID výsledku v databázi Scopus
2-s2.0-85140981612