Photoinduced CO2 Conversion under Arctic Conditions─The High Potential of Plasmon Chemistry under Low Temperature
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43926961" target="_blank" >RIV/60461373:22310/23:43926961 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/23:43897693 RIV/00216275:25310/23:39920540
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acscatal.2c05891" target="_blank" >https://pubs.acs.org/doi/10.1021/acscatal.2c05891</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acscatal.2c05891" target="_blank" >10.1021/acscatal.2c05891</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Photoinduced CO2 Conversion under Arctic Conditions─The High Potential of Plasmon Chemistry under Low Temperature
Popis výsledku v původním jazyce
The conversion of CO2 to fine chemicals is an efficient tool for reducing the negative impact of human activities on the environment. In this work, we show that CO2 capture and its sunlight-based activation can proceed efficiently even at low, practically arctic temperatures with the implementation of so-called plasmon-assisted chemistry. We propose the specific photocatalyst consisting of two parts: (i) an organic shell responsible for CO2 capture and (ii) a plasmon-active metal nanoparticle core for activation of entrapped CO2 and involving it in the cycloaddition reaction. The effect of temperature on the plasmon-assisted CO2 cycloaddition was studied, and a reaction with only slight temperature sensitivity was observed. Theoretical calculations indicated a significant decrease in the “apparent” activation barrier of the reaction under the plasmon-assisted mechanism. Our results open an opportunity for the world economy to exploit the vast Arctic and Antarctic (or close to them) territories where the powerful solar potential is practically not used yet. © 2023 The Authors. Published by American Chemical Society.
Název v anglickém jazyce
Photoinduced CO2 Conversion under Arctic Conditions─The High Potential of Plasmon Chemistry under Low Temperature
Popis výsledku anglicky
The conversion of CO2 to fine chemicals is an efficient tool for reducing the negative impact of human activities on the environment. In this work, we show that CO2 capture and its sunlight-based activation can proceed efficiently even at low, practically arctic temperatures with the implementation of so-called plasmon-assisted chemistry. We propose the specific photocatalyst consisting of two parts: (i) an organic shell responsible for CO2 capture and (ii) a plasmon-active metal nanoparticle core for activation of entrapped CO2 and involving it in the cycloaddition reaction. The effect of temperature on the plasmon-assisted CO2 cycloaddition was studied, and a reaction with only slight temperature sensitivity was observed. Theoretical calculations indicated a significant decrease in the “apparent” activation barrier of the reaction under the plasmon-assisted mechanism. Our results open an opportunity for the world economy to exploit the vast Arctic and Antarctic (or close to them) territories where the powerful solar potential is practically not used yet. © 2023 The Authors. Published by American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02022S" target="_blank" >GA22-02022S: Hybridní materiály a pokročilé struktury pro napodobování přirozené fotosyntézy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Catalysis
ISSN
2155-5435
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
3830-3840
Kód UT WoS článku
000951498200001
EID výsledku v databázi Scopus
2-s2.0-85149459420