Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43928099" target="_blank" >RIV/60461373:22310/23:43928099 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22330/23:43928099 RIV/60461373:22340/23:43928099 RIV/00216275:25310/23:39921127

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acscatal.3c02958" target="_blank" >https://pubs.acs.org/doi/10.1021/acscatal.3c02958</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscatal.3c02958" target="_blank" >10.1021/acscatal.3c02958</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis

  • Popis výsledku v původním jazyce

    Gold nanoparticles with shape-determined chirality enable the attainment of plasmon-associated optical activities exceeding those exhibited by all previously known natural objects. These nanoparticles, together with their subdiffraction light focusing and excitation of chiral, plasmon-related near-fields, offer a range of very interesting applications. Herein, we propose the use of these chiral plasmon nanoparticles for asymmetric organic catalysis with the implementation of optically active organic probes (alkoxyamines). Plasmon triggering causes the homolysis of the C-ON bond in the structure of the employed organic molecules, forming stable radicals, which can be easily detected using electron paramagnetic resonance spectroscopy. Our investigation delves into the influence of various parameters on the catalytic process, such as the chirality of the nanoparticles, the not-required circular polarization of the incident light, and the optical activity of the probes used. The results clearly show that the efficiency of a chemical reaction depends on all of these factors but to different extents. The “correct” combination of these parameters facilitates the attainment of the highest chemical reaction rate. To the best of our knowledge, this study pioneers the use of inherently chiral plasmon-based nanoparticles for asymmetric organic transformations. The proposed route of chiral plasmon catalysis can be used in various fields, including polarization-controlled chemistry, asymmetric catalysis, and the enantioselective separation of organic compounds (through the preferential elimination of one enantiomer). © 2023 The Authors. Published by American Chemical Society.

  • Název v anglickém jazyce

    Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis

  • Popis výsledku anglicky

    Gold nanoparticles with shape-determined chirality enable the attainment of plasmon-associated optical activities exceeding those exhibited by all previously known natural objects. These nanoparticles, together with their subdiffraction light focusing and excitation of chiral, plasmon-related near-fields, offer a range of very interesting applications. Herein, we propose the use of these chiral plasmon nanoparticles for asymmetric organic catalysis with the implementation of optically active organic probes (alkoxyamines). Plasmon triggering causes the homolysis of the C-ON bond in the structure of the employed organic molecules, forming stable radicals, which can be easily detected using electron paramagnetic resonance spectroscopy. Our investigation delves into the influence of various parameters on the catalytic process, such as the chirality of the nanoparticles, the not-required circular polarization of the incident light, and the optical activity of the probes used. The results clearly show that the efficiency of a chemical reaction depends on all of these factors but to different extents. The “correct” combination of these parameters facilitates the attainment of the highest chemical reaction rate. To the best of our knowledge, this study pioneers the use of inherently chiral plasmon-based nanoparticles for asymmetric organic transformations. The proposed route of chiral plasmon catalysis can be used in various fields, including polarization-controlled chemistry, asymmetric catalysis, and the enantioselective separation of organic compounds (through the preferential elimination of one enantiomer). © 2023 The Authors. Published by American Chemical Society.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-02550S" target="_blank" >GA21-02550S: Plazmonem indukované zachycení excitovaného spinového stavu v komplexech se spinovým krosoverem</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Catalysis

  • ISSN

    2155-5435

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    12859-12867

  • Kód UT WoS článku

    001068847900001

  • EID výsledku v databázi Scopus

    2-s2.0-85174691791