Harmonizing microstructures and enhancing mechanical resilience : Novel powder metallurgy approach for Zn–Mg alloys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929368" target="_blank" >RIV/60461373:22310/24:43929368 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/24:00587849 RIV/00216208:11320/24:10493286
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2238785424015345" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2238785424015345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmrt.2024.06.223" target="_blank" >10.1016/j.jmrt.2024.06.223</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Harmonizing microstructures and enhancing mechanical resilience : Novel powder metallurgy approach for Zn–Mg alloys
Popis výsledku v původním jazyce
Zinc alloys are recognised for their excellent biocompatibility and favourable corrosion rates, making them suitable for bioabsorbable implants. However, their mechanical properties necessitate improvement to fulfil the rigorous requirements of biomedical applications. This research focuses on engineering pseudo-harmonic structures within zinc alloys through a comprehensive method combining mechanical alloying, spark plasma sintering, and hot extrusion techniques. This fabrication process results in a composite material characterised by a soft core surrounded by a continuous, three-dimensional, ultrafine-grained hard shell. The experiment involved blending pure zinc with Zn–1Mg alloy powder, leading to the formation of both ductile zinc and fine-grained Zn–1Mg regions. While the Mg2Zn11 intermetallic phase was found to enhance the alloy's mechanical strength, the presence of oxide shells adversely affected the material's properties. The elimination of these shells via hot extrusion markedly improved the alloy's tensile strength, reaching an average value of tensile strength of 333 ± 7 MPa. This study provides significant insights into the material engineering of zinc-based alloys for biodegradable implant applications, demonstrating a viable approach to optimising their mechanical performance.
Název v anglickém jazyce
Harmonizing microstructures and enhancing mechanical resilience : Novel powder metallurgy approach for Zn–Mg alloys
Popis výsledku anglicky
Zinc alloys are recognised for their excellent biocompatibility and favourable corrosion rates, making them suitable for bioabsorbable implants. However, their mechanical properties necessitate improvement to fulfil the rigorous requirements of biomedical applications. This research focuses on engineering pseudo-harmonic structures within zinc alloys through a comprehensive method combining mechanical alloying, spark plasma sintering, and hot extrusion techniques. This fabrication process results in a composite material characterised by a soft core surrounded by a continuous, three-dimensional, ultrafine-grained hard shell. The experiment involved blending pure zinc with Zn–1Mg alloy powder, leading to the formation of both ductile zinc and fine-grained Zn–1Mg regions. While the Mg2Zn11 intermetallic phase was found to enhance the alloy's mechanical strength, the presence of oxide shells adversely affected the material's properties. The elimination of these shells via hot extrusion markedly improved the alloy's tensile strength, reaching an average value of tensile strength of 333 ± 7 MPa. This study provides significant insights into the material engineering of zinc-based alloys for biodegradable implant applications, demonstrating a viable approach to optimising their mechanical performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-11439K" target="_blank" >GF21-11439K: Vývoj pokročilých bioabsorbovatelných materiálů na bázi zinku postupy práškové metalurgie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Research and Technology-JMR&T
ISSN
2238-7854
e-ISSN
2214-0697
Svazek periodika
31
Číslo periodika v rámci svazku
July-August 2024
Stát vydavatele periodika
BR - Brazilská federativní republika
Počet stran výsledku
13
Strana od-do
2807-2819
Kód UT WoS článku
001269253900001
EID výsledku v databázi Scopus
2-s2.0-85198038790