LIPSS pattern induced by polymer surface instability for myoblast cell guidance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929628" target="_blank" >RIV/60461373:22310/24:43929628 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/24:43929628 RIV/44555601:13440/24:43898413
Výsledek na webu
<a href="https://doi.org/10.1016/j.polymdegradstab.2024.110667" target="_blank" >https://doi.org/10.1016/j.polymdegradstab.2024.110667</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.polymdegradstab.2024.110667" target="_blank" >10.1016/j.polymdegradstab.2024.110667</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LIPSS pattern induced by polymer surface instability for myoblast cell guidance
Popis výsledku v původním jazyce
The presented study highlights the efficiency of employing a KrF excimer laser to create diverse types of periodic nanostructures (LIPSS - laser induced periodic surface structures) on polyether ether ketone (PEEK) and polyethylene naphthalate (PEN) substrates. LIPSS structures are very important both in tissue engineering and find also strong application in the field of sensor construction, and SERS analysis. By exposing the polymer films below their ablation threshold to laser fluence ranging from 4 to 16 mJ & sdot;cm- 2 at 6,000 pulses, we studied both single-phase exposure at beam incidence angles of 0 degrees and 45 degrees, and two-phase exposure. Atomic force microscopy analysis revealed that the laser-treated samples contained distinctive periodic patterns such as waves, globules, and pod-like structures each exhibiting unique surface roughness. Moreover, using analytical methods like EDS and XPS shed light on the changes in the atomic composition, specifically focusing on the C and O elements, as a result of laser exposure. Notably, in almost all cases, we observed an increase in oxygen percentage on the sample surfaces. This increase not only led to a decrease in the contact angle with water but also lowered the zeta potential value, thus showing that the modified samples have enhanced hydrophilicity of the surface and altered electrostatic properties. Last but not least, the samples were assessed for biocompatibility; we studied the interaction of the prepared replicates with mouse myoblasts (C2C12). The impact of globular/dot structures on the cell growth in comparison to pristine or linear LIPSS-patterned surfaces was determined. The linear pattern (LIPSS) induced the myoblast cell alignment along the pattern direction, while dot/globular pattern even enhanced the cytocompatibility compared to LIPSS samples. Through this comprehensive analysis, the research underscores the multifaceted implications of employing KrF excimer laser-induced nanostructures, ranging from surface morphology alterations to biocompatibility enhancements, thus, opening new avenues for advanced material engineering.
Název v anglickém jazyce
LIPSS pattern induced by polymer surface instability for myoblast cell guidance
Popis výsledku anglicky
The presented study highlights the efficiency of employing a KrF excimer laser to create diverse types of periodic nanostructures (LIPSS - laser induced periodic surface structures) on polyether ether ketone (PEEK) and polyethylene naphthalate (PEN) substrates. LIPSS structures are very important both in tissue engineering and find also strong application in the field of sensor construction, and SERS analysis. By exposing the polymer films below their ablation threshold to laser fluence ranging from 4 to 16 mJ & sdot;cm- 2 at 6,000 pulses, we studied both single-phase exposure at beam incidence angles of 0 degrees and 45 degrees, and two-phase exposure. Atomic force microscopy analysis revealed that the laser-treated samples contained distinctive periodic patterns such as waves, globules, and pod-like structures each exhibiting unique surface roughness. Moreover, using analytical methods like EDS and XPS shed light on the changes in the atomic composition, specifically focusing on the C and O elements, as a result of laser exposure. Notably, in almost all cases, we observed an increase in oxygen percentage on the sample surfaces. This increase not only led to a decrease in the contact angle with water but also lowered the zeta potential value, thus showing that the modified samples have enhanced hydrophilicity of the surface and altered electrostatic properties. Last but not least, the samples were assessed for biocompatibility; we studied the interaction of the prepared replicates with mouse myoblasts (C2C12). The impact of globular/dot structures on the cell growth in comparison to pristine or linear LIPSS-patterned surfaces was determined. The linear pattern (LIPSS) induced the myoblast cell alignment along the pattern direction, while dot/globular pattern even enhanced the cytocompatibility compared to LIPSS samples. Through this comprehensive analysis, the research underscores the multifaceted implications of employing KrF excimer laser-induced nanostructures, ranging from surface morphology alterations to biocompatibility enhancements, thus, opening new avenues for advanced material engineering.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-05506S" target="_blank" >GA21-05506S: Interakce buněk s periodicky nanostrukturovanými povrchy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
POLYMER DEGRADATION AND STABILITY
ISSN
0141-3910
e-ISSN
1873-2321
Svazek periodika
221
Číslo periodika v rámci svazku
MAR 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
"110667/1"-15
Kód UT WoS článku
001176550700001
EID výsledku v databázi Scopus
2-s2.0-85183330611