Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929647" target="_blank" >RIV/60461373:22310/24:43929647 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41467-024-48148-w" target="_blank" >https://www.nature.com/articles/s41467-024-48148-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-024-48148-w" target="_blank" >10.1038/s41467-024-48148-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams
Popis výsledku v původním jazyce
Low-cost detection systems are needed for the identification of microplastics (MPs) in environmental samples. However, their rapid identification is hindered by the need for complex isolation and pre-treatment methods. This study describes a comprehensive sensing platform to identify MPs in environmental samples without requiring independent separation or pre-treatment protocols. It leverages the physicochemical properties of macroporous-mesoporous silver (Ag) substrates templated with self-assembled polymeric micelles to concurrently separate and analyze multiple MP targets using surface-enhanced Raman spectroscopy (SERS). The hydrophobic layer on Ag aids in stabilizing the nanostructures in the environment and mitigates biofouling. To monitor complex samples with multiple MPs and to demultiplex numerous overlapping patterns, we develop a neural network (NN) algorithm called SpecATNet that employs a self-attention mechanism to resolve the complex dependencies and patterns in SERS data to identify six common types of MPs: polystyrene, polyethylene, polymethylmethacrylate, polytetrafluoroethylene, nylon, and polyethylene terephthalate. SpecATNet uses multi-label classification to analyze multi-component mixtures even in the presence of various interference agents. The combination of macroporous-mesoporous Ag substrates and self-attention-based NN technology holds potential to enable field monitoring of MPs by generating rich datasets that machines can interpret and analyze. Detection and identification of microplastics (MPs) in environmental samples is hampered by the need for isolation and pretreatment methods. Here, the authors combine porous Ag substrates with self-attention neural networks to directly identify six types of MPs in environmental samples.
Název v anglickém jazyce
Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams
Popis výsledku anglicky
Low-cost detection systems are needed for the identification of microplastics (MPs) in environmental samples. However, their rapid identification is hindered by the need for complex isolation and pre-treatment methods. This study describes a comprehensive sensing platform to identify MPs in environmental samples without requiring independent separation or pre-treatment protocols. It leverages the physicochemical properties of macroporous-mesoporous silver (Ag) substrates templated with self-assembled polymeric micelles to concurrently separate and analyze multiple MP targets using surface-enhanced Raman spectroscopy (SERS). The hydrophobic layer on Ag aids in stabilizing the nanostructures in the environment and mitigates biofouling. To monitor complex samples with multiple MPs and to demultiplex numerous overlapping patterns, we develop a neural network (NN) algorithm called SpecATNet that employs a self-attention mechanism to resolve the complex dependencies and patterns in SERS data to identify six common types of MPs: polystyrene, polyethylene, polymethylmethacrylate, polytetrafluoroethylene, nylon, and polyethylene terephthalate. SpecATNet uses multi-label classification to analyze multi-component mixtures even in the presence of various interference agents. The combination of macroporous-mesoporous Ag substrates and self-attention-based NN technology holds potential to enable field monitoring of MPs by generating rich datasets that machines can interpret and analyze. Detection and identification of microplastics (MPs) in environmental samples is hampered by the need for isolation and pretreatment methods. Here, the authors combine porous Ag substrates with self-attention neural networks to directly identify six types of MPs in environmental samples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Communications
ISSN
2041-1723
e-ISSN
2041-1723
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
"4351/1"-15
Kód UT WoS článku
001234660500004
EID výsledku v databázi Scopus
—