Scalable 2D Semiconductor-Based van der Waals Heterostructure Interface with Built-in Electric Field for Enhanced Electrochemical Water Splitting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929993" target="_blank" >RIV/60461373:22310/24:43929993 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/pdf/10.1002/sstr.202400257" target="_blank" >https://onlinelibrary.wiley.com/doi/pdf/10.1002/sstr.202400257</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/sstr.202400257" target="_blank" >10.1002/sstr.202400257</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalable 2D Semiconductor-Based van der Waals Heterostructure Interface with Built-in Electric Field for Enhanced Electrochemical Water Splitting
Popis výsledku v původním jazyce
Electrochemical water splitting has received tremendous attention as an eco-friendly approach to produce hydrogen. Noble metals and their oxides are commonly used as electrocatalysts to reduce activation energy barriers for hydrogen and oxygen evolution reactions in high-performance electrodes, but their cost, scarcity, and limited stability hinder widespread adoption of electrochemical water splitting. Further advancements are therefore needed to reduce reliance on noble metals and improve the long-term stability. Herein, solution-processed 2D van der Waals (vdW) p-n heterostructures as an interfacial layer between catalysts and the electrode are introduced to enhance the catalytic performance. These heterostructures are formed by sequentially assembling electrochemically exfoliated black phosphorus and molybdenum disulfide nanosheets into electronic-grade p- and n-type semiconductor thin films, with the scalability extending across tens-of-centimeter scale areas. Benefiting from the charge distribution and built-in electric field developed upon heterojunction formation, the vdW heterostructure interfacial layer increases both the catalytic activity and stability of commercial Pt/C and Ir/C catalysts compared to when these catalysts are directly loaded onto electrodes. Additionally, the vdW heterostructure also serves as a template for synthesizing nanostructured Pt and Ir catalysts through electrodeposition, further enhancing the catalytic performance in terms of mass activity and stability. A scalable method to fabricate electronic-grade van der Waals heterostructure interface is developed using electrochemically exfoliated black phosphorus and molybdenum disulfide nanosheets. Benefiting from surface charge distribution and built-in electric field, these heterostructures serve as interfacial layers to enhance nanocatalysts for hydrogen and oxygen evolution reactions.image (c) 2024 WILEY-VCH GmbH
Název v anglickém jazyce
Scalable 2D Semiconductor-Based van der Waals Heterostructure Interface with Built-in Electric Field for Enhanced Electrochemical Water Splitting
Popis výsledku anglicky
Electrochemical water splitting has received tremendous attention as an eco-friendly approach to produce hydrogen. Noble metals and their oxides are commonly used as electrocatalysts to reduce activation energy barriers for hydrogen and oxygen evolution reactions in high-performance electrodes, but their cost, scarcity, and limited stability hinder widespread adoption of electrochemical water splitting. Further advancements are therefore needed to reduce reliance on noble metals and improve the long-term stability. Herein, solution-processed 2D van der Waals (vdW) p-n heterostructures as an interfacial layer between catalysts and the electrode are introduced to enhance the catalytic performance. These heterostructures are formed by sequentially assembling electrochemically exfoliated black phosphorus and molybdenum disulfide nanosheets into electronic-grade p- and n-type semiconductor thin films, with the scalability extending across tens-of-centimeter scale areas. Benefiting from the charge distribution and built-in electric field developed upon heterojunction formation, the vdW heterostructure interfacial layer increases both the catalytic activity and stability of commercial Pt/C and Ir/C catalysts compared to when these catalysts are directly loaded onto electrodes. Additionally, the vdW heterostructure also serves as a template for synthesizing nanostructured Pt and Ir catalysts through electrodeposition, further enhancing the catalytic performance in terms of mass activity and stability. A scalable method to fabricate electronic-grade van der Waals heterostructure interface is developed using electrochemically exfoliated black phosphorus and molybdenum disulfide nanosheets. Benefiting from surface charge distribution and built-in electric field, these heterostructures serve as interfacial layers to enhance nanocatalysts for hydrogen and oxygen evolution reactions.image (c) 2024 WILEY-VCH GmbH
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL2101" target="_blank" >LL2101: Příští Generace Monoelementárních 2D Materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Small Structures
ISSN
2688-4062
e-ISSN
2688-4062
Svazek periodika
5
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001292894700001
EID výsledku v databázi Scopus
2-s2.0-85201370595