Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gC3N4@MoS2 heterosystem and plasmon-active nanoparticles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930487" target="_blank" >RIV/60461373:22310/24:43930487 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/24:00377706
Výsledek na webu
<a href="https://doi-org.ezproxy.vscht.cz/10.1039/D4TA03350G" target="_blank" >https://doi-org.ezproxy.vscht.cz/10.1039/D4TA03350G</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4ta03350g" target="_blank" >10.1039/d4ta03350g</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gC3N4@MoS2 heterosystem and plasmon-active nanoparticles
Popis výsledku v původním jazyce
The electrochemical production of ammonia from nitrogen (so-called nitrogen reduction reaction - NRR) is one of the key tasks of modern electrochemistry. The use of photo-electrochemical approaches in the NRR allows the involvement of renewable sunlight energy and partially reduces the energy demand of the NRR process and increases its efficiency. For efficient photoelectrochemical NRR realization, a rational design of the photoelectrode used is required. In this work, we propose the design, creation, and optimization of a hybrid electrode, based on utilization of coupled 2D semiconductors and plasmonic hot spots. In our approach, the gC3N4@MoS2 semiconductor (in the form of 2D flakes), with high catalytic activity towards the NRR is used as a redox-active material. For the involvement of sunlight energy, plasmon triggering is used in two modes: simple plasmonic triggering using a periodic Au grating and coupled plasmon triggering through the sandwiching of 2D gC3N4@MoS2 flakes between the Au grating and different plasmon active nanoparticles (gold and silver nanoparticles with different shapes). We also carried out a series of calculations (including finite difference time domain estimation of plasmon energy distribution and density functional calculation) aimed at the estimation of the local value of plasmon energy and the NRR process under conditions of plasmon triggering. As a result of careful design and photoelectrode optimization, we were able to achieve 882.1 μg h−1 mgcat−1 ammonia yield and 22.1% faradaic efficiency. The proposed photoelectrode design makes it possible to effectively use both the catalytic properties of the coupled semiconductors and the strengths of plasmon-assisted triggering. © 2024 The Royal Society of Chemistry.
Název v anglickém jazyce
Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gC3N4@MoS2 heterosystem and plasmon-active nanoparticles
Popis výsledku anglicky
The electrochemical production of ammonia from nitrogen (so-called nitrogen reduction reaction - NRR) is one of the key tasks of modern electrochemistry. The use of photo-electrochemical approaches in the NRR allows the involvement of renewable sunlight energy and partially reduces the energy demand of the NRR process and increases its efficiency. For efficient photoelectrochemical NRR realization, a rational design of the photoelectrode used is required. In this work, we propose the design, creation, and optimization of a hybrid electrode, based on utilization of coupled 2D semiconductors and plasmonic hot spots. In our approach, the gC3N4@MoS2 semiconductor (in the form of 2D flakes), with high catalytic activity towards the NRR is used as a redox-active material. For the involvement of sunlight energy, plasmon triggering is used in two modes: simple plasmonic triggering using a periodic Au grating and coupled plasmon triggering through the sandwiching of 2D gC3N4@MoS2 flakes between the Au grating and different plasmon active nanoparticles (gold and silver nanoparticles with different shapes). We also carried out a series of calculations (including finite difference time domain estimation of plasmon energy distribution and density functional calculation) aimed at the estimation of the local value of plasmon energy and the NRR process under conditions of plasmon triggering. As a result of careful design and photoelectrode optimization, we were able to achieve 882.1 μg h−1 mgcat−1 ammonia yield and 22.1% faradaic efficiency. The proposed photoelectrode design makes it possible to effectively use both the catalytic properties of the coupled semiconductors and the strengths of plasmon-assisted triggering. © 2024 The Royal Society of Chemistry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-08509S" target="_blank" >GA23-08509S: Plasmonová asistence v duální organické elektrochemií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry A
ISSN
2050-7488
e-ISSN
2050-7496
Svazek periodika
12
Číslo periodika v rámci svazku
32
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
21310-21320
Kód UT WoS článku
001273715300001
EID výsledku v databázi Scopus
2-s2.0-85199431681