Benchmarking performance: A round-robin testing for liquid alkaline electrolysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43931143" target="_blank" >RIV/60461373:22310/24:43931143 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360319924049784?pes=vor&utm_source=scopus&getft_integrator=scopus" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360319924049784?pes=vor&utm_source=scopus&getft_integrator=scopus</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijhydene.2024.11.288" target="_blank" >10.1016/j.ijhydene.2024.11.288</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarking performance: A round-robin testing for liquid alkaline electrolysis
Popis výsledku v původním jazyce
Liquid alkaline water electrolysis has gained considerable interest in recent years due to its promising role in an energy sector based on renewable energy sources. Its main advantage is the low investment cost of industrial alkaline water electrolyzers compared to other electrolysis technologies. A challenge remains in developing costefficient materials, stable in corrosive electrolytes, and offering competitive cell performance. Although there are many publications in liquid alkaline electrolysis, there is insufficient standardization of experimental conditions and procedures, reference materials, and hardware. As a result, comparability and reproducibility suffer, significantly slowing down research progress. This manuscript presents the initial efforts towards the development of such reference hardware and procedures within the framework of Task 30 Electrolysis in the Technology Collaboration Programme on Advanced Fuel Cells (AFC TCP) of the International Energy Agency (IEA). For this purpose, a homogenized setup including the electrolysis cell, functional materials, experimental conditions, and a test protocol was developed. The protocol and hardware were tested simultaneously at eleven different institutions in Europe and North America. To evaluate the success of this approach, polarization and run-in data were collected and analyzed for comparison, and performance differences were calculated. Significant disparities between the laboratories were observed and some key influence factors were identified: iron content in the electrolyte resulted to be a main source of deviation between experiments, along with temperature control and the conditioning of the cells. The results suggest that additional attention to detailed experimental conditions should be paid to obtain meaningful performance data in future research.
Název v anglickém jazyce
Benchmarking performance: A round-robin testing for liquid alkaline electrolysis
Popis výsledku anglicky
Liquid alkaline water electrolysis has gained considerable interest in recent years due to its promising role in an energy sector based on renewable energy sources. Its main advantage is the low investment cost of industrial alkaline water electrolyzers compared to other electrolysis technologies. A challenge remains in developing costefficient materials, stable in corrosive electrolytes, and offering competitive cell performance. Although there are many publications in liquid alkaline electrolysis, there is insufficient standardization of experimental conditions and procedures, reference materials, and hardware. As a result, comparability and reproducibility suffer, significantly slowing down research progress. This manuscript presents the initial efforts towards the development of such reference hardware and procedures within the framework of Task 30 Electrolysis in the Technology Collaboration Programme on Advanced Fuel Cells (AFC TCP) of the International Energy Agency (IEA). For this purpose, a homogenized setup including the electrolysis cell, functional materials, experimental conditions, and a test protocol was developed. The protocol and hardware were tested simultaneously at eleven different institutions in Europe and North America. To evaluate the success of this approach, polarization and run-in data were collected and analyzed for comparison, and performance differences were calculated. Significant disparities between the laboratories were observed and some key influence factors were identified: iron content in the electrolyte resulted to be a main source of deviation between experiments, along with temperature control and the conditioning of the cells. The results suggest that additional attention to detailed experimental conditions should be paid to obtain meaningful performance data in future research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
ISSN
0360-3199
e-ISSN
1879-3487
Svazek periodika
95
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
1004-1010
Kód UT WoS článku
001364301000001
EID výsledku v databázi Scopus
2-s2.0-85209726211