Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interpretation of experimental findings on the structure of glass in the CaO–MoO3–P2O5 system using a thermodynamic model including oxidation–reduction equilibria

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43931226" target="_blank" >RIV/60461373:22310/24:43931226 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10973-023-12511-8" target="_blank" >https://link.springer.com/article/10.1007/s10973-023-12511-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10973-023-12511-8" target="_blank" >10.1007/s10973-023-12511-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interpretation of experimental findings on the structure of glass in the CaO–MoO3–P2O5 system using a thermodynamic model including oxidation–reduction equilibria

  • Popis výsledku v původním jazyce

    This work extends the thermodynamic model of associated solutions used in the past to describe the structure and properties of glasses to the area of complex multicomponent glasses with polyvalent elements, where it has not been applied until now either due to the absence of Gibbs energies of formation of the necessary compounds or due to oxidation–reduction equilibrium in the presence of a gas phase containing oxygen. While the fitting of unknown Gibbs energies based on experimental data has already been applied to some extent in our previous work, the implementation of redox is, to the best of our knowledge, new. Four concentration series were taken from the published data from the glass-forming ternary system CaO–MoO3−P2O5: A) xMoO3−(0.5–0.75x)CaO−(0.5–0.25x)P2O5; B) xMoO3−(0.5–0.875x)CaO−(0.5–0.125x)P2O5; C) xMoO3−(0.5−x)CaO−0.5P2O5; M) xMoO3−(1−x)P2O, for which the distributions of Qn units were also published (Q denotes the PO4 tetrahedral unit with n bridging oxygens) by the 31P MAS NMR method and the Mo[V]/ΣMo fraction by the ESR method [Černošek et al. (J Solid State Chem 303:122522, 2021); Holubová et al., (J Non-Cryst Solids 607:122222, 2023)]. The following compounds were considered in the TD model: P2O5, CaO, Mo[VI]O3, Ca(PO3)2, Ca2P2O7, (Mo[VI]O2)(PO3)2, (Mo[VI]O2)2(P2O7), (Mo[VI]O2)3(PO4)2, (Mo[V]O)2(PO3)2(P2O7), (Mo[V]O)PO4. All except the hypothetical compound (Mo[VI]O2)3(PO4)2 exist, and their structure is known. Binary phosphate compounds with molybdenum lack Gibbs energies of formation. Therefore, one of the series, namely A, was used to determine these energies by nonlinear regression with the help of a genetic algorithm, without/with redox, and then the distribution of Qn units and the fraction of Mo[V]/ΣMo was predicted for the remaining series. It was found that the distribution of Qn units can be described by the TD model with redox only. During the reduction of molybdenum, the distribution of Qn unit’s changes, and thus also the connectivity of the phosphate network, for example, according to the reactions: (MoO2)2(P2O7)—&gt; 2(MoO)PO4 + 1/2O2, in which Q1—&gt; Q0 and 2(MoO2)(PO3)2—&gt; (MoO)2(PO3)2(P2O7) + 1/2O2 in which Q2—&gt; Q1. Despite the fact that the TD model with redox gives excellent agreement in the case of the Qn distribution, the agreement with the ESR measurements of the Mo[V]/ΣMo ratio is not good. The TD model predicts significantly more pentavalent molybdenum in the glass. © The Author(s) 2023.

  • Název v anglickém jazyce

    Interpretation of experimental findings on the structure of glass in the CaO–MoO3–P2O5 system using a thermodynamic model including oxidation–reduction equilibria

  • Popis výsledku anglicky

    This work extends the thermodynamic model of associated solutions used in the past to describe the structure and properties of glasses to the area of complex multicomponent glasses with polyvalent elements, where it has not been applied until now either due to the absence of Gibbs energies of formation of the necessary compounds or due to oxidation–reduction equilibrium in the presence of a gas phase containing oxygen. While the fitting of unknown Gibbs energies based on experimental data has already been applied to some extent in our previous work, the implementation of redox is, to the best of our knowledge, new. Four concentration series were taken from the published data from the glass-forming ternary system CaO–MoO3−P2O5: A) xMoO3−(0.5–0.75x)CaO−(0.5–0.25x)P2O5; B) xMoO3−(0.5–0.875x)CaO−(0.5–0.125x)P2O5; C) xMoO3−(0.5−x)CaO−0.5P2O5; M) xMoO3−(1−x)P2O, for which the distributions of Qn units were also published (Q denotes the PO4 tetrahedral unit with n bridging oxygens) by the 31P MAS NMR method and the Mo[V]/ΣMo fraction by the ESR method [Černošek et al. (J Solid State Chem 303:122522, 2021); Holubová et al., (J Non-Cryst Solids 607:122222, 2023)]. The following compounds were considered in the TD model: P2O5, CaO, Mo[VI]O3, Ca(PO3)2, Ca2P2O7, (Mo[VI]O2)(PO3)2, (Mo[VI]O2)2(P2O7), (Mo[VI]O2)3(PO4)2, (Mo[V]O)2(PO3)2(P2O7), (Mo[V]O)PO4. All except the hypothetical compound (Mo[VI]O2)3(PO4)2 exist, and their structure is known. Binary phosphate compounds with molybdenum lack Gibbs energies of formation. Therefore, one of the series, namely A, was used to determine these energies by nonlinear regression with the help of a genetic algorithm, without/with redox, and then the distribution of Qn units and the fraction of Mo[V]/ΣMo was predicted for the remaining series. It was found that the distribution of Qn units can be described by the TD model with redox only. During the reduction of molybdenum, the distribution of Qn unit’s changes, and thus also the connectivity of the phosphate network, for example, according to the reactions: (MoO2)2(P2O7)—&gt; 2(MoO)PO4 + 1/2O2, in which Q1—&gt; Q0 and 2(MoO2)(PO3)2—&gt; (MoO)2(PO3)2(P2O7) + 1/2O2 in which Q2—&gt; Q1. Despite the fact that the TD model with redox gives excellent agreement in the case of the Qn distribution, the agreement with the ESR measurements of the Mo[V]/ΣMo ratio is not good. The TD model predicts significantly more pentavalent molybdenum in the glass. © The Author(s) 2023.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20504 - Ceramics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTT20001" target="_blank" >LTT20001: Povrchy silikátových skel; charakterizace, struktura a modifikace. Spolupráce s Centrem excelence FunGlass.</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY

  • ISSN

    1388-6150

  • e-ISSN

    1588-2926

  • Svazek periodika

    149

  • Číslo periodika v rámci svazku

    20

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    11429-11442

  • Kód UT WoS článku

    001068809400001

  • EID výsledku v databázi Scopus

    2-s2.0-85171475652