Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The effect of pressure on hydrotreating of rapeseed oil

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22320%2F17%3A43913344" target="_blank" >RIV/60461373:22320/17:43913344 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.icct.cz/AngiologyKlon-ICCT/media/system/ICCT2017-full_papers.pdf" target="_blank" >http://www.icct.cz/AngiologyKlon-ICCT/media/system/ICCT2017-full_papers.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The effect of pressure on hydrotreating of rapeseed oil

  • Popis výsledku v původním jazyce

    The main reason for production and application of biofuels is environment protection. Biomass containing triglycerides (i.e. vegetable oils, animal fats, used cooking oils and oils from microalgae) constitute a very attractive feedstock due to its favourable composition. At present, these feedstocks are processed mainly by transesterification (biodiesel production) and seldom by hydrotreating. When hydrotreating is used, product with a better thermo-oxidative stability and higher energy content is obtained in comparison with biodiesel. Hydrotreating of vegetable oils is usually carried out at temperatures of 300 ? 370 °C and pressures of 2 ? 10 MPa. Sulfidic (mainly Ni-Mo, Co-Mo and Ni-W) or metal (Pt, Pd, Ni) catalysts supported on alumina are commonly used. In this work, the influence of reaction temperature and pressure on the composition and properties of products from hydrotreating of rapeseed oil was evaluated. A sulfidic Ni-Mo/?-Al2O3 catalyst, temperatures of 260, 280 and 300 °C and pressures of 0.5, 1, 2, 4 and 8 MPa were used. Obtained results showed that a complete conversion of rapeseed oil into hydrocarbons was achieved only at the highest tested temperature. The content of unreacted triglycerides in products decreased with increasing reaction temperature and pressure as expected. The content of oxygen-containing intermediates in products (palmitic and stearic acid, octadecan-1-ol) was the highest at 280 °C. Hydrodeoxygenation was preferred at the expense of hydrodecarbonylation/hydrodecarboxylation at higher pressures, which was evident from the decreasing C17/C18 hydrocarbons ratio with increasing hydrogen pressure.

  • Název v anglickém jazyce

    The effect of pressure on hydrotreating of rapeseed oil

  • Popis výsledku anglicky

    The main reason for production and application of biofuels is environment protection. Biomass containing triglycerides (i.e. vegetable oils, animal fats, used cooking oils and oils from microalgae) constitute a very attractive feedstock due to its favourable composition. At present, these feedstocks are processed mainly by transesterification (biodiesel production) and seldom by hydrotreating. When hydrotreating is used, product with a better thermo-oxidative stability and higher energy content is obtained in comparison with biodiesel. Hydrotreating of vegetable oils is usually carried out at temperatures of 300 ? 370 °C and pressures of 2 ? 10 MPa. Sulfidic (mainly Ni-Mo, Co-Mo and Ni-W) or metal (Pt, Pd, Ni) catalysts supported on alumina are commonly used. In this work, the influence of reaction temperature and pressure on the composition and properties of products from hydrotreating of rapeseed oil was evaluated. A sulfidic Ni-Mo/?-Al2O3 catalyst, temperatures of 260, 280 and 300 °C and pressures of 0.5, 1, 2, 4 and 8 MPa were used. Obtained results showed that a complete conversion of rapeseed oil into hydrocarbons was achieved only at the highest tested temperature. The content of unreacted triglycerides in products decreased with increasing reaction temperature and pressure as expected. The content of oxygen-containing intermediates in products (palmitic and stearic acid, octadecan-1-ol) was the highest at 280 °C. Hydrodeoxygenation was preferred at the expense of hydrodecarbonylation/hydrodecarboxylation at higher pressures, which was evident from the decreasing C17/C18 hydrocarbons ratio with increasing hydrogen pressure.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20700 - Environmental engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1613" target="_blank" >LO1613: Výzkum nových materiálů pro chemický průmysl</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 5th International Conference on Chemical Technology

  • ISBN

    978-80-86238-65-4

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    6

  • Strana od-do

    355-360

  • Název nakladatele

    Česká společnost průmyslové chemie (ČSPCH)

  • Místo vydání

    Praha

  • Místo konání akce

    Mikulov

  • Datum konání akce

    10. 4. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku