Refinery co-processing of renewable feeds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22320%2F18%3A43915471" target="_blank" >RIV/60461373:22320/18:43915471 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22350/18:43915471
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360128517301454?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360128517301454?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.pecs.2018.04.002" target="_blank" >10.1016/j.pecs.2018.04.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Refinery co-processing of renewable feeds
Popis výsledku v původním jazyce
Biofuels are called upon to play an important role, not only in reducing the associated greenhouse-gases emissions, but also in enabling the gradual independence from fossil sources, rendering low-carbon-highly-sustainable fuels. Today, the involvement of biomass-derived sources into existing petroleum refineries has a growing interest due to the increasing unpredictability of oil prices, environmental concerns and the necessity to secure an energy supply. Petroleum refineries already have a well-developed infrastructure to produce fuels and base chemicals and, consequently, would not require additional intensive investments for processing of alternative feedstocks. From this point of view, co-processing of biomass-derived feedstocks with petroleum fractions is an attractive option, which has already been industrially demonstrated in some cases. There are two main technologies that could be used for co-processing of biomass feedstocks with petroleum fractions, the first one being catalytic hydroprocessing and the second one being fluid catalytic cracking (FCC). Both technologies are found in virtually any conventional refinery. It is obvious that the co-processing of biomass-based feedstocks with petroleum fractions has the potential to play an important role in the near future. There are several research studies in literature that examine both technologies for co-processing. However, while there are many technological reviews that focus on stand-alone biofuel production (e.g., FAME biodiesel, bioethanol, HVO etc.), a dedicated technological review on co-processing for production of hybrid fuels is still missing. Therefore, this paper is focused on presenting a state-of-the-art review on co-processing bio-based feedstocks with petroleum fractions via hydroprocessing and fluid catalytic cracking, looking at different potential feedstocks, catalysts, operating conditions, products and benefits in detail. As there is no specifically dedicated literature review in this field, the content of this review provides a guideline on co-processing of different bio-based feedstocks with petroleum fractions, aimed at delivering a technological assessment of the existing research efforts.
Název v anglickém jazyce
Refinery co-processing of renewable feeds
Popis výsledku anglicky
Biofuels are called upon to play an important role, not only in reducing the associated greenhouse-gases emissions, but also in enabling the gradual independence from fossil sources, rendering low-carbon-highly-sustainable fuels. Today, the involvement of biomass-derived sources into existing petroleum refineries has a growing interest due to the increasing unpredictability of oil prices, environmental concerns and the necessity to secure an energy supply. Petroleum refineries already have a well-developed infrastructure to produce fuels and base chemicals and, consequently, would not require additional intensive investments for processing of alternative feedstocks. From this point of view, co-processing of biomass-derived feedstocks with petroleum fractions is an attractive option, which has already been industrially demonstrated in some cases. There are two main technologies that could be used for co-processing of biomass feedstocks with petroleum fractions, the first one being catalytic hydroprocessing and the second one being fluid catalytic cracking (FCC). Both technologies are found in virtually any conventional refinery. It is obvious that the co-processing of biomass-based feedstocks with petroleum fractions has the potential to play an important role in the near future. There are several research studies in literature that examine both technologies for co-processing. However, while there are many technological reviews that focus on stand-alone biofuel production (e.g., FAME biodiesel, bioethanol, HVO etc.), a dedicated technological review on co-processing for production of hybrid fuels is still missing. Therefore, this paper is focused on presenting a state-of-the-art review on co-processing bio-based feedstocks with petroleum fractions via hydroprocessing and fluid catalytic cracking, looking at different potential feedstocks, catalysts, operating conditions, products and benefits in detail. As there is no specifically dedicated literature review in this field, the content of this review provides a guideline on co-processing of different bio-based feedstocks with petroleum fractions, aimed at delivering a technological assessment of the existing research efforts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Progress in Energy and Combustion Science
ISSN
0360-1285
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
35
Strana od-do
29-64
Kód UT WoS článku
000441487400002
EID výsledku v databázi Scopus
—