Interactions of nanoscale zero valent iron and iron reducing bacteria in remediation of trichloroethene
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22320%2F18%3A43915508" target="_blank" >RIV/60461373:22320/18:43915508 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ibiod.2017.10.009" target="_blank" >http://dx.doi.org/10.1016/j.ibiod.2017.10.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ibiod.2017.10.009" target="_blank" >10.1016/j.ibiod.2017.10.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interactions of nanoscale zero valent iron and iron reducing bacteria in remediation of trichloroethene
Popis výsledku v původním jazyce
In this work we investigated the interactions between the nanoscale zero valent iron (nZVI) and iron reducing bacteria (IRB) during the remediation of trichloroethene (TCE). Dehalogenation of TCE was examined using nZVI NANOFER 25 (N25) and the Gram-negative bacterium Shewanella algae CCM 4595 in liquid and soil slurry microcosms. The rates of dehalogenation were determined by gas chromatography. The interactions between N25 and S. algae were investigated using X-Ray diffraction (XRD), ferrozine test, Tandem Scanning Confocal Microscope (TSCM) and viable cell counts. Results showed that S. algae impaired TCE removal by N25. TCE dehalogenation rates in liquid microcosms were 17 times faster in absence than in presence of S. algae, and 8 times faster in soil slurry microcosms. The concentrations of dissolved Fe2+ and Fe3+ ions in the N25 + S. algae microcosms were an order of magnitude higher than that in bacteria-free microcosms. Moreover, the XRD data showed that the presence of S. algae significantly increases the depletion of reactive Fe0 and causes the formation of poorly soluble and insoluble Fe3+ oxide-hydroxides that can inhibit electron transfer from iron to the contaminant. Viable cell counts showed that N25 considerably inhibited microbial growth. Furthermore, TSCM demonstrated that S. algae tends to adhere to the surface of N25 suggesting that direct nanoparticle attachment may impact both the microbial population and the electron transfer from the iron to the contaminant. Data suggested that S. algae contributes significantly to N25 anoxic corrosion through microbial iron respiration. Our findings provide better insights about the fate of nZVI in the subsurface and its interactions with surrounding microorganisms.
Název v anglickém jazyce
Interactions of nanoscale zero valent iron and iron reducing bacteria in remediation of trichloroethene
Popis výsledku anglicky
In this work we investigated the interactions between the nanoscale zero valent iron (nZVI) and iron reducing bacteria (IRB) during the remediation of trichloroethene (TCE). Dehalogenation of TCE was examined using nZVI NANOFER 25 (N25) and the Gram-negative bacterium Shewanella algae CCM 4595 in liquid and soil slurry microcosms. The rates of dehalogenation were determined by gas chromatography. The interactions between N25 and S. algae were investigated using X-Ray diffraction (XRD), ferrozine test, Tandem Scanning Confocal Microscope (TSCM) and viable cell counts. Results showed that S. algae impaired TCE removal by N25. TCE dehalogenation rates in liquid microcosms were 17 times faster in absence than in presence of S. algae, and 8 times faster in soil slurry microcosms. The concentrations of dissolved Fe2+ and Fe3+ ions in the N25 + S. algae microcosms were an order of magnitude higher than that in bacteria-free microcosms. Moreover, the XRD data showed that the presence of S. algae significantly increases the depletion of reactive Fe0 and causes the formation of poorly soluble and insoluble Fe3+ oxide-hydroxides that can inhibit electron transfer from iron to the contaminant. Viable cell counts showed that N25 considerably inhibited microbial growth. Furthermore, TSCM demonstrated that S. algae tends to adhere to the surface of N25 suggesting that direct nanoparticle attachment may impact both the microbial population and the electron transfer from the iron to the contaminant. Data suggested that S. algae contributes significantly to N25 anoxic corrosion through microbial iron respiration. Our findings provide better insights about the fate of nZVI in the subsurface and its interactions with surrounding microorganisms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Biodeterioration and Biodegradation
ISSN
0964-8305
e-ISSN
—
Svazek periodika
127
Číslo periodika v rámci svazku
February 2018
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
241-246
Kód UT WoS článku
000426230400028
EID výsledku v databázi Scopus
—