Effects of barium on the pathways of anaerobic digestion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22320%2F19%3A43920112" target="_blank" >RIV/60461373:22320/19:43920112 - isvavai.cz</a>
Výsledek na webu
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=C5IJh4aAM4wQo2e4jtJ&page=1&doc=7" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=C5IJh4aAM4wQo2e4jtJ&page=1&doc=7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvman.2018.11.065" target="_blank" >10.1016/j.jenvman.2018.11.065</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of barium on the pathways of anaerobic digestion
Popis výsledku v původním jazyce
The sufficient presence of trace elements (TE) is essential for anaerobic digestion. Barium (Ba) is considered a non-essential trace element that can be collaterally added to digesters as part of low-cost trace element sources or because of its presence in some feedstocks, such as crude glycerol. In the present study, the impact of Ba supplementation (2–2000 mg/L) on each stage of the anaerobic digestion (AD) process was evaluated using pure substrates (i.e., cellulose, glucose, a mixture of volatile fatty acids, sodium acetate and hydrogen) as well as a complex substrate (i.e., dried green fodder). Hydrolytic activity was affected at dosages higher than 200 mg Ba/L, whereas cellulose degradation was completely inhibited at 2000 mg Ba/L. The negative effects of the addition of Ba to methane production were observed only in the hydrolytic activity, and no effects were detected at any barium dosage in the subsequent anaerobic steps. Because Ba does not have a reported role as a cofactor of enzymes, this response could have been due to a direct inhibitory effect, a variation in the bioavailability of other trace elements, or even the availability of CO 2 /SO 4 through precipitation as Ba-carbonates and sulphates. The results showed that the addition of Ba modified the chemical equilibrium of the studied system by varying the soluble concentration of some TEs and therefore their bioavailability. The highest variation was detected in the soluble concentration of zinc, which increased as the amount of Ba increased. Although little research has shown that Ba has some utility in anaerobic processes, its addition must be carefully monitored to avoid an undesirable modification of the chemical equilibrium in the system. © 2018 Elsevier Ltd
Název v anglickém jazyce
Effects of barium on the pathways of anaerobic digestion
Popis výsledku anglicky
The sufficient presence of trace elements (TE) is essential for anaerobic digestion. Barium (Ba) is considered a non-essential trace element that can be collaterally added to digesters as part of low-cost trace element sources or because of its presence in some feedstocks, such as crude glycerol. In the present study, the impact of Ba supplementation (2–2000 mg/L) on each stage of the anaerobic digestion (AD) process was evaluated using pure substrates (i.e., cellulose, glucose, a mixture of volatile fatty acids, sodium acetate and hydrogen) as well as a complex substrate (i.e., dried green fodder). Hydrolytic activity was affected at dosages higher than 200 mg Ba/L, whereas cellulose degradation was completely inhibited at 2000 mg Ba/L. The negative effects of the addition of Ba to methane production were observed only in the hydrolytic activity, and no effects were detected at any barium dosage in the subsequent anaerobic steps. Because Ba does not have a reported role as a cofactor of enzymes, this response could have been due to a direct inhibitory effect, a variation in the bioavailability of other trace elements, or even the availability of CO 2 /SO 4 through precipitation as Ba-carbonates and sulphates. The results showed that the addition of Ba modified the chemical equilibrium of the studied system by varying the soluble concentration of some TEs and therefore their bioavailability. The highest variation was detected in the soluble concentration of zinc, which increased as the amount of Ba increased. Although little research has shown that Ba has some utility in anaerobic processes, its addition must be carefully monitored to avoid an undesirable modification of the chemical equilibrium in the system. © 2018 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20801 - Environmental biotechnology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Environmental Management
ISSN
0301-4797
e-ISSN
—
Svazek periodika
232
Číslo periodika v rámci svazku
15 February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
397-403
Kód UT WoS článku
000459845200044
EID výsledku v databázi Scopus
2-s2.0-85059303944