Metadynamics modelling of the solvent effect on primary hydroxyl rotamer equilibria in hexopyranosides.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F09%3A00022336" target="_blank" >RIV/60461373:22330/09:00022336 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Metadynamics modelling of the solvent effect on primary hydroxyl rotamer equilibria in hexopyranosides.
Popis výsledku v původním jazyce
Accurate modelling of rotamer equilibria for the primary hydroxyl groups of monosaccharides continues to be a great challenge of computational glycochemistry. The metadynamics technique was applied to study the conformational free energy surfaces of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside, employing the GLYCAM06 force field. For both molecules, seven to eight conformational free energy minima, differing in the omega (O5-C5-C6-O6) and chi (C3-C4-O4-HO4) dihedral angles, were identified in vacuum or in a water environment. The calculated rotamer equilibrium of the primary hydroxyl group is significantly different in vacuum than in water. The major effect of a water environment is the destabilisation of a hydrogen bond betweenO4-HO4 and O6-HO6 groups. It was possible to calculate the free-energy differences of individual rotamers with an accuracy of better than 2 kJ/mol. The calculated gg, gt and tg rotamer populations in water are in close agreement with expe
Název v anglickém jazyce
Metadynamics modelling of the solvent effect on primary hydroxyl rotamer equilibria in hexopyranosides.
Popis výsledku anglicky
Accurate modelling of rotamer equilibria for the primary hydroxyl groups of monosaccharides continues to be a great challenge of computational glycochemistry. The metadynamics technique was applied to study the conformational free energy surfaces of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside, employing the GLYCAM06 force field. For both molecules, seven to eight conformational free energy minima, differing in the omega (O5-C5-C6-O6) and chi (C3-C4-O4-HO4) dihedral angles, were identified in vacuum or in a water environment. The calculated rotamer equilibrium of the primary hydroxyl group is significantly different in vacuum than in water. The major effect of a water environment is the destabilisation of a hydrogen bond betweenO4-HO4 and O6-HO6 groups. It was possible to calculate the free-energy differences of individual rotamers with an accuracy of better than 2 kJ/mol. The calculated gg, gt and tg rotamer populations in water are in close agreement with expe
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CE - Biochemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Carbohydrate Research
ISSN
0008-6215
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
344
Stát vydavatele periodika
BE - Belgické království
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
000269734500025
EID výsledku v databázi Scopus
—