Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F18%3A43915615" target="_blank" >RIV/60461373:22330/18:43915615 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22340/18:43915615

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/rcm.8110" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/rcm.8110</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rcm.8110" target="_blank" >10.1002/rcm.8110</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains

  • Popis výsledku v původním jazyce

    Rationale Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. Methods Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24h and 48h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. Results For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns - a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. Conclusions Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available free of charge from http://uprt.vscht.cz/ms .

  • Název v anglickém jazyce

    Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains

  • Popis výsledku anglicky

    Rationale Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. Methods Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24h and 48h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. Results For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns - a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. Conclusions Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available free of charge from http://uprt.vscht.cz/ms .

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10606 - Microbiology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-22276S" target="_blank" >GA15-22276S: Příprava transgenních rostlin se zvýšenou rezistencí proti stresu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Rapid Communications in Mass Spectrometry

  • ISSN

    0951-4198

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    871-881

  • Kód UT WoS článku

    000432226100005

  • EID výsledku v databázi Scopus

    2-s2.0-85047562825