Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Critical assessment of chemometric models employed for varietal authentication of wine based on UHPLC-HRMS data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F23%3A43926145" target="_blank" >RIV/60461373:22330/23:43926145 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.foodcont.2022.109336" target="_blank" >https://doi.org/10.1016/j.foodcont.2022.109336</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.foodcont.2022.109336" target="_blank" >10.1016/j.foodcont.2022.109336</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Critical assessment of chemometric models employed for varietal authentication of wine based on UHPLC-HRMS data

  • Popis výsledku v původním jazyce

    The use of metabolic fingerprinting combined with advanced chemometric tools for wine authentication has increased in recent years. Although numerous studies, showing different authentication strategies, have been published, rarely any attention has been paid to the stability of used classification models over a longer time period. Here, we present a reliable and robust metabolic fingerprinting-based multiclass strategy for varietal authentication of wine. Analysis was conducted using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry. Two sets of commercial wine samples, one for the creation of classification models (201 wines, five red and five white grape varieties) and one for the verification of their validity over a longer time period (138 wines, three white varieties), were analysed. The generated data from the first sample set were subjected to orthogonal partial least squares discriminant analysis (OPLS-DA). The resulting models were validated and used to build decision trees, which enabled the classification of wine samples according to the grape variety. The individual classification rates of the OPLS-DA models were 90–100%. Overall classification rates of the decision trees were 94 and 96% for red and white wines, respectively. In case of the white wine decision tree, verification of its validity over a longer time period was performed using an additional sample set, analysed four months after the original sample set. From the additional sample set, 87% of samples were correctly classified, thus, the stability of the OPLS-DA classification models over a longer time period was verified. In addition, 25 varietal markers of significant statistical importance, mostly flavonoids, phenolic acids and their derivatives, were tentatively identified. © 2022

  • Název v anglickém jazyce

    Critical assessment of chemometric models employed for varietal authentication of wine based on UHPLC-HRMS data

  • Popis výsledku anglicky

    The use of metabolic fingerprinting combined with advanced chemometric tools for wine authentication has increased in recent years. Although numerous studies, showing different authentication strategies, have been published, rarely any attention has been paid to the stability of used classification models over a longer time period. Here, we present a reliable and robust metabolic fingerprinting-based multiclass strategy for varietal authentication of wine. Analysis was conducted using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry. Two sets of commercial wine samples, one for the creation of classification models (201 wines, five red and five white grape varieties) and one for the verification of their validity over a longer time period (138 wines, three white varieties), were analysed. The generated data from the first sample set were subjected to orthogonal partial least squares discriminant analysis (OPLS-DA). The resulting models were validated and used to build decision trees, which enabled the classification of wine samples according to the grape variety. The individual classification rates of the OPLS-DA models were 90–100%. Overall classification rates of the decision trees were 94 and 96% for red and white wines, respectively. In case of the white wine decision tree, verification of its validity over a longer time period was performed using an additional sample set, analysed four months after the original sample set. From the additional sample set, 87% of samples were correctly classified, thus, the stability of the OPLS-DA classification models over a longer time period was verified. In addition, 25 varietal markers of significant statistical importance, mostly flavonoids, phenolic acids and their derivatives, were tentatively identified. © 2022

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018100" target="_blank" >LM2018100: Infrastruktura pro propagaci metrologie v potravinářství a výživě v České republice</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Food control

  • ISSN

    0956-7135

  • e-ISSN

    1873-7129

  • Svazek periodika

    143

  • Číslo periodika v rámci svazku

    JAN 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000862886700002

  • EID výsledku v databázi Scopus

    2-s2.0-85137105831