Edge detection in medical images using the Wavelet Transform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F11%3A43892370" target="_blank" >RIV/60461373:22340/11:43892370 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Edge detection in medical images using the Wavelet Transform
Popis výsledku v původním jazyce
Edge detection improves image readability and it is an important part of images preprocessing aimed to their segmentation and automatic recognition of their contents. This paper describes selected methods of edge detection in magnetic resonance images, with the emphasis on the wavelet transform use. Modulus Maxima Method by Stephane Mallat provides the method for edge detection using wavelet transform. This method is based on finding local maxima of horizontal and vertical wavelet coefficients in the first level of wavelet decomposition. It was tested with various wavelet functions both on simulated and real medical images. Presented paper contains a comparison of basic edge detection methods including simple gradient operators and Canny edge detector,and their combination with wavelet transform use. Mathematical principals were studied, as well as application of these methods. All algorithms were developed in the MATLAB environment using Wavelet and Image Processing Toolboxes.
Název v anglickém jazyce
Edge detection in medical images using the Wavelet Transform
Popis výsledku anglicky
Edge detection improves image readability and it is an important part of images preprocessing aimed to their segmentation and automatic recognition of their contents. This paper describes selected methods of edge detection in magnetic resonance images, with the emphasis on the wavelet transform use. Modulus Maxima Method by Stephane Mallat provides the method for edge detection using wavelet transform. This method is based on finding local maxima of horizontal and vertical wavelet coefficients in the first level of wavelet decomposition. It was tested with various wavelet functions both on simulated and real medical images. Presented paper contains a comparison of basic edge detection methods including simple gradient operators and Canny edge detector,and their combination with wavelet transform use. Mathematical principals were studied, as well as application of these methods. All algorithms were developed in the MATLAB environment using Wavelet and Image Processing Toolboxes.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Posterus
ISSN
1338-0087
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—