Information Thermodynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F11%3A43894140" target="_blank" >RIV/60461373:22340/11:43894140 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5772/21309" target="_blank" >http://dx.doi.org/10.5772/21309</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5772/21309" target="_blank" >10.5772/21309</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information Thermodynamics
Popis výsledku v původním jazyce
We apply unifying physical description of the results of Information Theory. Assuming that heat entropy is a thermodynamic realization of information entropy, we construct a cyclical, thermodynamic, average-value model of an information transfer chain asa Carnot engine, reversible or irreversible. A working medium of the cycle can be considered as a thermodynamic, average-value model or as a realization of an information transfer channel. We show that for a model realized in this way the extended II. Principle of Thermodynamics is valid and we formulate its information form. We state the relation between the term of information entropy, introduced by C. Shannon and thermodynamic entropy, introduced by R. Clausius and explain Gibbs paradox. Our way isa connection of both the mathematical definitions of information entropies and their mutual relations within a given system of stochastic quantities especially with thermodynamic entropies defined on an isolated systém.]. We analyze Gibbs
Název v anglickém jazyce
Information Thermodynamics
Popis výsledku anglicky
We apply unifying physical description of the results of Information Theory. Assuming that heat entropy is a thermodynamic realization of information entropy, we construct a cyclical, thermodynamic, average-value model of an information transfer chain asa Carnot engine, reversible or irreversible. A working medium of the cycle can be considered as a thermodynamic, average-value model or as a realization of an information transfer channel. We show that for a model realized in this way the extended II. Principle of Thermodynamics is valid and we formulate its information form. We state the relation between the term of information entropy, introduced by C. Shannon and thermodynamic entropy, introduced by R. Clausius and explain Gibbs paradox. Our way isa connection of both the mathematical definitions of information entropies and their mutual relations within a given system of stochastic quantities especially with thermodynamic entropies defined on an isolated systém.]. We analyze Gibbs
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Thermodynamics - Physical Chemistry of Aqueous Systems
ISBN
978-953-307-979-0
Počet stran výsledku
31
Strana od-do
73-103
Počet stran knihy
434
Název nakladatele
InTech
Místo vydání
InTech
Kód UT WoS kapitoly
—