Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of the Effect of Solid Loadings on Rheological Properties of Highly Concentrated Biocompatible Nanoparticle Suspensions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F16%3A43902577" target="_blank" >RIV/60461373:22340/16:43902577 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22330/16:43902577

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of the Effect of Solid Loadings on Rheological Properties of Highly Concentrated Biocompatible Nanoparticle Suspensions

  • Popis výsledku v původním jazyce

    Preparation and colloidal dispersion of highly concentrated biocompatible nanoparticles suspensions are vital for fabrication of dense bioceramic nanocomposites with improved mechanical and microstructural properties for biomedicine applications. This paper presents formation and rheological characterization of highly concentrated biocompatible aqueous ZrO2 nanosuspensions for such applications. The rheological properties including viscosity (?), shear rate (?), and shear stress (?) were investigated in relation to a wide range of solid loading (?, by weight = 75 - 78 mass%). Maximum solid loading (?max) was estimated with a constant 0.9 mass% concentration of a new type of anionic polyelectrolyte Dolapix CE64, suitable for casting of materials. A colloidal model was proposed to visualize the effect of solid loading on colloidal stability, rheological behavior and green microstructure of samples after casting. The maximum solid loading (?max) was estimated to be 77 mass% based on the dependence of both viscosity (?) and yield stress (?0) on solid loading (?). For further validation, the maximum solid loading was compared and fitted by different rheological flow. models with a correlation factor r = 0.998 for Herschel-Bulkley model, r = 0.999 forPower law model and r = 0.920 for Bingham model at shear rate ? (50 s-1). All concentrated ZrO2 nanosuspensions exhibited shear-thinning behaviour. The results obtained from rheological measurements, scanning electron microscopy imaging and flow models validate our proposed hypothesis for prediction of maximum solid loading and visualization of quality of green microstructures after casting. These results contribute to preparation, characterization, and processing of highly concentrated bio/nanoparticles suspensions; aiming to fabricate highly dense bio/nanocomposite materials with specific functionality.

  • Název v anglickém jazyce

    Evaluation of the Effect of Solid Loadings on Rheological Properties of Highly Concentrated Biocompatible Nanoparticle Suspensions

  • Popis výsledku anglicky

    Preparation and colloidal dispersion of highly concentrated biocompatible nanoparticles suspensions are vital for fabrication of dense bioceramic nanocomposites with improved mechanical and microstructural properties for biomedicine applications. This paper presents formation and rheological characterization of highly concentrated biocompatible aqueous ZrO2 nanosuspensions for such applications. The rheological properties including viscosity (?), shear rate (?), and shear stress (?) were investigated in relation to a wide range of solid loading (?, by weight = 75 - 78 mass%). Maximum solid loading (?max) was estimated with a constant 0.9 mass% concentration of a new type of anionic polyelectrolyte Dolapix CE64, suitable for casting of materials. A colloidal model was proposed to visualize the effect of solid loading on colloidal stability, rheological behavior and green microstructure of samples after casting. The maximum solid loading (?max) was estimated to be 77 mass% based on the dependence of both viscosity (?) and yield stress (?0) on solid loading (?). For further validation, the maximum solid loading was compared and fitted by different rheological flow. models with a correlation factor r = 0.998 for Herschel-Bulkley model, r = 0.999 forPower law model and r = 0.920 for Bingham model at shear rate ? (50 s-1). All concentrated ZrO2 nanosuspensions exhibited shear-thinning behaviour. The results obtained from rheological measurements, scanning electron microscopy imaging and flow models validate our proposed hypothesis for prediction of maximum solid loading and visualization of quality of green microstructures after casting. These results contribute to preparation, characterization, and processing of highly concentrated bio/nanoparticles suspensions; aiming to fabricate highly dense bio/nanocomposite materials with specific functionality.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    CF - Fyzikální chemie a teoretická chemie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    HSOA Journal of Nanotechnology: Nanomedicine and Nanobiotechnology

  • ISSN

    2381-2044

  • e-ISSN

  • Svazek periodika

    3

  • Číslo periodika v rámci svazku

    May 2016

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    7

  • Strana od-do

    1-7

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus