Evaluation of the Effect of Solid Loadings on Rheological Properties of Highly Concentrated Biocompatible Nanoparticle Suspensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F16%3A43902577" target="_blank" >RIV/60461373:22340/16:43902577 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/16:43902577
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of the Effect of Solid Loadings on Rheological Properties of Highly Concentrated Biocompatible Nanoparticle Suspensions
Popis výsledku v původním jazyce
Preparation and colloidal dispersion of highly concentrated biocompatible nanoparticles suspensions are vital for fabrication of dense bioceramic nanocomposites with improved mechanical and microstructural properties for biomedicine applications. This paper presents formation and rheological characterization of highly concentrated biocompatible aqueous ZrO2 nanosuspensions for such applications. The rheological properties including viscosity (?), shear rate (?), and shear stress (?) were investigated in relation to a wide range of solid loading (?, by weight = 75 - 78 mass%). Maximum solid loading (?max) was estimated with a constant 0.9 mass% concentration of a new type of anionic polyelectrolyte Dolapix CE64, suitable for casting of materials. A colloidal model was proposed to visualize the effect of solid loading on colloidal stability, rheological behavior and green microstructure of samples after casting. The maximum solid loading (?max) was estimated to be 77 mass% based on the dependence of both viscosity (?) and yield stress (?0) on solid loading (?). For further validation, the maximum solid loading was compared and fitted by different rheological flow. models with a correlation factor r = 0.998 for Herschel-Bulkley model, r = 0.999 forPower law model and r = 0.920 for Bingham model at shear rate ? (50 s-1). All concentrated ZrO2 nanosuspensions exhibited shear-thinning behaviour. The results obtained from rheological measurements, scanning electron microscopy imaging and flow models validate our proposed hypothesis for prediction of maximum solid loading and visualization of quality of green microstructures after casting. These results contribute to preparation, characterization, and processing of highly concentrated bio/nanoparticles suspensions; aiming to fabricate highly dense bio/nanocomposite materials with specific functionality.
Název v anglickém jazyce
Evaluation of the Effect of Solid Loadings on Rheological Properties of Highly Concentrated Biocompatible Nanoparticle Suspensions
Popis výsledku anglicky
Preparation and colloidal dispersion of highly concentrated biocompatible nanoparticles suspensions are vital for fabrication of dense bioceramic nanocomposites with improved mechanical and microstructural properties for biomedicine applications. This paper presents formation and rheological characterization of highly concentrated biocompatible aqueous ZrO2 nanosuspensions for such applications. The rheological properties including viscosity (?), shear rate (?), and shear stress (?) were investigated in relation to a wide range of solid loading (?, by weight = 75 - 78 mass%). Maximum solid loading (?max) was estimated with a constant 0.9 mass% concentration of a new type of anionic polyelectrolyte Dolapix CE64, suitable for casting of materials. A colloidal model was proposed to visualize the effect of solid loading on colloidal stability, rheological behavior and green microstructure of samples after casting. The maximum solid loading (?max) was estimated to be 77 mass% based on the dependence of both viscosity (?) and yield stress (?0) on solid loading (?). For further validation, the maximum solid loading was compared and fitted by different rheological flow. models with a correlation factor r = 0.998 for Herschel-Bulkley model, r = 0.999 forPower law model and r = 0.920 for Bingham model at shear rate ? (50 s-1). All concentrated ZrO2 nanosuspensions exhibited shear-thinning behaviour. The results obtained from rheological measurements, scanning electron microscopy imaging and flow models validate our proposed hypothesis for prediction of maximum solid loading and visualization of quality of green microstructures after casting. These results contribute to preparation, characterization, and processing of highly concentrated bio/nanoparticles suspensions; aiming to fabricate highly dense bio/nanocomposite materials with specific functionality.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
HSOA Journal of Nanotechnology: Nanomedicine and Nanobiotechnology
ISSN
2381-2044
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
May 2016
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
1-7
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—