Pilot Study of Sleep Apnea Detection with Wavelet Transform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F17%3A43914777" target="_blank" >RIV/60461373:22340/17:43914777 - isvavai.cz</a>
Výsledek na webu
<a href="http://www2.humusoft.cz/www/papers/tcp2017/032_schatz.pdf" target="_blank" >http://www2.humusoft.cz/www/papers/tcp2017/032_schatz.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pilot Study of Sleep Apnea Detection with Wavelet Transform
Popis výsledku v původním jazyce
The sleep apnea syndrom is defined as repeated pauses in breathing during sleep period which leads to interrupts in sleep and decreases in oxyhemoglobin saturation. It is well understood that quantity and quality of sleep could significantly affect work productivity. In this study multimodal analysis of breathing is done with two different sensors. The first sensor measures nasal air flow and the second sensor measure abdomen effort during breathing. As it is needed to manually go through records of whole night sleep to confirm some of an automatic classification of events that can disturb sleep, it is very important to have accurate classifier. This papers aim is to present results of pilot study of competitive neural network (CNN) classifier based on Wavelet transform, with which is possible to evaluate sleep apnea from multimodal breathing data with accuracy of 94.2 % with comparison to classification of Sleep apnea by doctor. Evaluation of the whole output of CNN is complicated as the neural network was trained without target data. It can detect all apnea events from length of 5 seconds, including those that are missing in the classification by a doctor.
Název v anglickém jazyce
Pilot Study of Sleep Apnea Detection with Wavelet Transform
Popis výsledku anglicky
The sleep apnea syndrom is defined as repeated pauses in breathing during sleep period which leads to interrupts in sleep and decreases in oxyhemoglobin saturation. It is well understood that quantity and quality of sleep could significantly affect work productivity. In this study multimodal analysis of breathing is done with two different sensors. The first sensor measures nasal air flow and the second sensor measure abdomen effort during breathing. As it is needed to manually go through records of whole night sleep to confirm some of an automatic classification of events that can disturb sleep, it is very important to have accurate classifier. This papers aim is to present results of pilot study of competitive neural network (CNN) classifier based on Wavelet transform, with which is possible to evaluate sleep apnea from multimodal breathing data with accuracy of 94.2 % with comparison to classification of Sleep apnea by doctor. Evaluation of the whole output of CNN is complicated as the neural network was trained without target data. It can detect all apnea events from length of 5 seconds, including those that are missing in the classification by a doctor.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
24th Annual Conference Proceedings Technical Computing Prague 2017
ISBN
978-80-7592-002-7
ISSN
2336-1662
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
"32-1"-"32-11"
Název nakladatele
Vysoká škola chemicko-technologická v Praze
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
8. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—