Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F18%3A43916698" target="_blank" >RIV/60461373:22340/18:43916698 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388955:_____/18:00495950
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpca.8b07974" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpca.8b07974</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.8b07974" target="_blank" >10.1021/acs.jpca.8b07974</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules
Popis výsledku v původním jazyce
Large ammonia clusters represent a model system of ices that are omnipresent throughout the space. The interaction of ammonia ices with other hydrogen-boding molecules such as methanol or water and their behavior upon an ionization are thus relevant in the astrochemical context. In this study, ammonia clusters (NH3)(N) with the mean size (N) over bar approximate to 230 were prepared in molecular beams and passed through a pickup cell in which methanol molecules were adsorbed. At the highest exploited pickup pressures, the average composition of (NH3)(N)(CH3OH)(M) clusters was estimated to be N:M approximate to 210:10. On the other hand, the electron ionization of these clusters yielded about 75% of methanol-containing fragments (NH3)(n)(CH3OH)(m)H+ compared to 25% contribution of pure ammonia (NH3)(n)H+ ions. On the basis of this substantial disproportion, we propose the following ionization mechanism: The prevailing ammonia is ionized in most cases, resulting in NH4+ core solvated most likely with four ammonia molecules, yielding the wellknown "magic number" structure (NH3)(4)NH4+. The methanol molecules exhibit a strong propensity for sticking to the fragment ion. We have also considered mechanisms of intracluster reactions. In most cases, proton transfer between ammonia units take place. The theoretical calculations suggested the proton transfer either from the methyl group or from the hydroxyl group of the ionized methanol molecule to ammonia to be the energetically open channels. However, the experiments with selectively deuterated methanols did not show any evidence for the D+ transfer from the CD3 group. The proton transfer from the hydroxyl group could not be excluded entirely or confirmed unambiguously by the experiment.
Název v anglickém jazyce
Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules
Popis výsledku anglicky
Large ammonia clusters represent a model system of ices that are omnipresent throughout the space. The interaction of ammonia ices with other hydrogen-boding molecules such as methanol or water and their behavior upon an ionization are thus relevant in the astrochemical context. In this study, ammonia clusters (NH3)(N) with the mean size (N) over bar approximate to 230 were prepared in molecular beams and passed through a pickup cell in which methanol molecules were adsorbed. At the highest exploited pickup pressures, the average composition of (NH3)(N)(CH3OH)(M) clusters was estimated to be N:M approximate to 210:10. On the other hand, the electron ionization of these clusters yielded about 75% of methanol-containing fragments (NH3)(n)(CH3OH)(m)H+ compared to 25% contribution of pure ammonia (NH3)(n)H+ ions. On the basis of this substantial disproportion, we propose the following ionization mechanism: The prevailing ammonia is ionized in most cases, resulting in NH4+ core solvated most likely with four ammonia molecules, yielding the wellknown "magic number" structure (NH3)(4)NH4+. The methanol molecules exhibit a strong propensity for sticking to the fragment ion. We have also considered mechanisms of intracluster reactions. In most cases, proton transfer between ammonia units take place. The theoretical calculations suggested the proton transfer either from the methyl group or from the hydroxyl group of the ionized methanol molecule to ammonia to be the energetically open channels. However, the experiments with selectively deuterated methanols did not show any evidence for the D+ transfer from the CD3 group. The proton transfer from the hydroxyl group could not be excluded entirely or confirmed unambiguously by the experiment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-04068S" target="_blank" >GA17-04068S: Molekulové klastry jako nano-reaktory pro chemii řízenou fotony a elektrony</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry A
ISSN
1089-5639
e-ISSN
—
Svazek periodika
122
Číslo periodika v rámci svazku
43
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
8458-8468
Kód UT WoS článku
000449308300004
EID výsledku v databázi Scopus
2-s2.0-85055819539