Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F18%3A43916698" target="_blank" >RIV/60461373:22340/18:43916698 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61388955:_____/18:00495950

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpca.8b07974" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpca.8b07974</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpca.8b07974" target="_blank" >10.1021/acs.jpca.8b07974</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules

  • Popis výsledku v původním jazyce

    Large ammonia clusters represent a model system of ices that are omnipresent throughout the space. The interaction of ammonia ices with other hydrogen-boding molecules such as methanol or water and their behavior upon an ionization are thus relevant in the astrochemical context. In this study, ammonia clusters (NH3)(N) with the mean size (N) over bar approximate to 230 were prepared in molecular beams and passed through a pickup cell in which methanol molecules were adsorbed. At the highest exploited pickup pressures, the average composition of (NH3)(N)(CH3OH)(M) clusters was estimated to be N:M approximate to 210:10. On the other hand, the electron ionization of these clusters yielded about 75% of methanol-containing fragments (NH3)(n)(CH3OH)(m)H+ compared to 25% contribution of pure ammonia (NH3)(n)H+ ions. On the basis of this substantial disproportion, we propose the following ionization mechanism: The prevailing ammonia is ionized in most cases, resulting in NH4+ core solvated most likely with four ammonia molecules, yielding the wellknown &quot;magic number&quot; structure (NH3)(4)NH4+. The methanol molecules exhibit a strong propensity for sticking to the fragment ion. We have also considered mechanisms of intracluster reactions. In most cases, proton transfer between ammonia units take place. The theoretical calculations suggested the proton transfer either from the methyl group or from the hydroxyl group of the ionized methanol molecule to ammonia to be the energetically open channels. However, the experiments with selectively deuterated methanols did not show any evidence for the D+ transfer from the CD3 group. The proton transfer from the hydroxyl group could not be excluded entirely or confirmed unambiguously by the experiment.

  • Název v anglickém jazyce

    Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules

  • Popis výsledku anglicky

    Large ammonia clusters represent a model system of ices that are omnipresent throughout the space. The interaction of ammonia ices with other hydrogen-boding molecules such as methanol or water and their behavior upon an ionization are thus relevant in the astrochemical context. In this study, ammonia clusters (NH3)(N) with the mean size (N) over bar approximate to 230 were prepared in molecular beams and passed through a pickup cell in which methanol molecules were adsorbed. At the highest exploited pickup pressures, the average composition of (NH3)(N)(CH3OH)(M) clusters was estimated to be N:M approximate to 210:10. On the other hand, the electron ionization of these clusters yielded about 75% of methanol-containing fragments (NH3)(n)(CH3OH)(m)H+ compared to 25% contribution of pure ammonia (NH3)(n)H+ ions. On the basis of this substantial disproportion, we propose the following ionization mechanism: The prevailing ammonia is ionized in most cases, resulting in NH4+ core solvated most likely with four ammonia molecules, yielding the wellknown &quot;magic number&quot; structure (NH3)(4)NH4+. The methanol molecules exhibit a strong propensity for sticking to the fragment ion. We have also considered mechanisms of intracluster reactions. In most cases, proton transfer between ammonia units take place. The theoretical calculations suggested the proton transfer either from the methyl group or from the hydroxyl group of the ionized methanol molecule to ammonia to be the energetically open channels. However, the experiments with selectively deuterated methanols did not show any evidence for the D+ transfer from the CD3 group. The proton transfer from the hydroxyl group could not be excluded entirely or confirmed unambiguously by the experiment.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-04068S" target="_blank" >GA17-04068S: Molekulové klastry jako nano-reaktory pro chemii řízenou fotony a elektrony</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry A

  • ISSN

    1089-5639

  • e-ISSN

  • Svazek periodika

    122

  • Číslo periodika v rámci svazku

    43

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    8458-8468

  • Kód UT WoS článku

    000449308300004

  • EID výsledku v databázi Scopus

    2-s2.0-85055819539