Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Differentiation between O-2 and NO2 impact on PtOx formation in a diesel oxidation catalyst

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F19%3A43919368" target="_blank" >RIV/60461373:22340/19:43919368 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0009250918308145?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0009250918308145?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ces.2018.11.038" target="_blank" >10.1016/j.ces.2018.11.038</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Differentiation between O-2 and NO2 impact on PtOx formation in a diesel oxidation catalyst

  • Popis výsledku v původním jazyce

    NO oxidation activity of platinum-based catalysts undergoes reversible changes during operation in oxidative atmosphere typical for Diesel engine exhaust gas due to platinum oxides (PtOx) formation and reduction. In recent years, these changes were studied mostly with the mixtures containing both O-2 and NO2 so that it was difficult to quantify individual impacts of the oxidants on PtOx formation. In this paper, Pt/Al2O3 catalyst deactivation and PtOx formation with O-2 and NO2 was examined separately by the means of transient isothermal experiments at 150, 175 and 200 degrees C with alternating deactivation and probe periods. The largest extent of deactivation was detected at 175 degrees C where the NO conversion in the isothermal experiment dropped from 85% (reduced catalyst) down to 10% (steady-state PtOx level) over 4 h. The experimental data were then utilized for parameter evaluation in global kinetic model of NO oxidation on a diesel oxidation catalyst extended by the reactions describing PtOx formation and reduction. Though the rate coefficient for PtOx formation with NO2 is higher than with O-2, the overall PtOx formation rate and the steady-state PtOx level are higher with O-2 at typical component concentrations (8% O-2 or 250 ppm NO2). Similar activation energies were observed for both PtOx formation reactions. Validity of the model was verified also at lower O-2 and NO2 concentrations (4% O-2 or 125 ppm NO2). The developed model is thus capable of sufficiently precise prediction of catalyst deactivation at various O-2 and NO2 concentrations relevant to diesel exhaust gas. (C) 2018 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Differentiation between O-2 and NO2 impact on PtOx formation in a diesel oxidation catalyst

  • Popis výsledku anglicky

    NO oxidation activity of platinum-based catalysts undergoes reversible changes during operation in oxidative atmosphere typical for Diesel engine exhaust gas due to platinum oxides (PtOx) formation and reduction. In recent years, these changes were studied mostly with the mixtures containing both O-2 and NO2 so that it was difficult to quantify individual impacts of the oxidants on PtOx formation. In this paper, Pt/Al2O3 catalyst deactivation and PtOx formation with O-2 and NO2 was examined separately by the means of transient isothermal experiments at 150, 175 and 200 degrees C with alternating deactivation and probe periods. The largest extent of deactivation was detected at 175 degrees C where the NO conversion in the isothermal experiment dropped from 85% (reduced catalyst) down to 10% (steady-state PtOx level) over 4 h. The experimental data were then utilized for parameter evaluation in global kinetic model of NO oxidation on a diesel oxidation catalyst extended by the reactions describing PtOx formation and reduction. Though the rate coefficient for PtOx formation with NO2 is higher than with O-2, the overall PtOx formation rate and the steady-state PtOx level are higher with O-2 at typical component concentrations (8% O-2 or 250 ppm NO2). Similar activation energies were observed for both PtOx formation reactions. Validity of the model was verified also at lower O-2 and NO2 concentrations (4% O-2 or 125 ppm NO2). The developed model is thus capable of sufficiently precise prediction of catalyst deactivation at various O-2 and NO2 concentrations relevant to diesel exhaust gas. (C) 2018 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20401 - Chemical engineering (plants, products)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-26018S" target="_blank" >GA17-26018S: Reakční kinetika v oxidačních katalyzátorech pro konverzi dieselových výfukových plynů za nízkých teplot</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Science

  • ISSN

    0009-2509

  • e-ISSN

  • Svazek periodika

    195

  • Číslo periodika v rámci svazku

    Neuvedeno

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    6

  • Strana od-do

    179-184

  • Kód UT WoS článku

    000454148500015

  • EID výsledku v databázi Scopus