Protein Stability in TMAO and Mixed Urea-TMAO Solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43920571" target="_blank" >RIV/60461373:22340/20:43920571 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcb.0c04357" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcb.0c04357</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcb.0c04357" target="_blank" >10.1021/acs.jpcb.0c04357</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Protein Stability in TMAO and Mixed Urea-TMAO Solutions
Popis výsledku v původním jazyce
Osmolytes are essential for cellular function under ubiquitous osmotic stress. Trimethylamine N-oxide (TMAO) is one such osmolyte that has gained remarkable attention due to its protein-protective ability against urea. This Review aims at providing a detailed account of recent theoretical and experimental developments in characterizing the structural changes and thermodynamic stability of proteins in the presence of TMAO and urea. New vapor pressure osmometry and molecular dynamics simulation results on urea–TMAO solutions are presented, and a unified molecular mechanism of TMAO counteraction of urea-induced protein denaturation is introduced. In addition, a detailed technical assessment of molecular dynamics force fields for TMAO and for urea–TMAO solutions is presented. The force field analysis highlights how many of the commonly used force field models are in fact incompatible with solvation thermodynamics and can lead to misleading conclusions. A new optimized force field for TMAO (Shea(m)) is presented, and a recently optimized force field for TMAO–urea (Netz(m)) that best reproduces experimental data is highlighted.
Název v anglickém jazyce
Protein Stability in TMAO and Mixed Urea-TMAO Solutions
Popis výsledku anglicky
Osmolytes are essential for cellular function under ubiquitous osmotic stress. Trimethylamine N-oxide (TMAO) is one such osmolyte that has gained remarkable attention due to its protein-protective ability against urea. This Review aims at providing a detailed account of recent theoretical and experimental developments in characterizing the structural changes and thermodynamic stability of proteins in the presence of TMAO and urea. New vapor pressure osmometry and molecular dynamics simulation results on urea–TMAO solutions are presented, and a unified molecular mechanism of TMAO counteraction of urea-induced protein denaturation is introduced. In addition, a detailed technical assessment of molecular dynamics force fields for TMAO and for urea–TMAO solutions is presented. The force field analysis highlights how many of the commonly used force field models are in fact incompatible with solvation thermodynamics and can lead to misleading conclusions. A new optimized force field for TMAO (Shea(m)) is presented, and a recently optimized force field for TMAO–urea (Netz(m)) that best reproduces experimental data is highlighted.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-24155S" target="_blank" >GA20-24155S: Studium preferenčních interakcí, přemosťování, a efektu kononsolvence na polymer PNIPAM pomocí experimentální a výpočetní termodynamiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry B
ISSN
1520-6106
e-ISSN
—
Svazek periodika
124
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
"6181–6197"
Kód UT WoS článku
000555505200001
EID výsledku v databázi Scopus
2-s2.0-85088607484