Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)-Azobenzene Spectrum

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43920930" target="_blank" >RIV/60461373:22340/20:43920930 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/20:00114554

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jctc.0c00579" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.0c00579</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.0c00579" target="_blank" >10.1021/acs.jctc.0c00579</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)-Azobenzene Spectrum

  • Popis výsledku v původním jazyce

    We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a &quot;good practice&quot;for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV-vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ∗ band and a pronounced decrease in intensity of the low-energy part of the ππ∗ band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ∗ band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck-Condon principle. Copyright © 2020 American Chemical Society.

  • Název v anglickém jazyce

    Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)-Azobenzene Spectrum

  • Popis výsledku anglicky

    We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a &quot;good practice&quot;for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV-vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ∗ band and a pronounced decrease in intensity of the low-energy part of the ππ∗ band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ∗ band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck-Condon principle. Copyright © 2020 American Chemical Society.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    6428-6438

  • Kód UT WoS článku

    000580954000039

  • EID výsledku v databázi Scopus

    2-s2.0-85092945198