Pressure in Molecular Simulations with Scaled Charges. 1. Ionic Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43921487" target="_blank" >RIV/60461373:22340/20:43921487 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02641" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02641</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcb.0c02641" target="_blank" >10.1021/acs.jpcb.0c02641</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pressure in Molecular Simulations with Scaled Charges. 1. Ionic Systems
Popis výsledku v původním jazyce
Charge scaling, rationalized as MDEC (molecular dynamics in electronic continuum) or ECC (electronic continuum correction), has become a widely used simple approach to how to avoid self-consistent induced dipoles yet approximately take into account the effects of electronic polarizability. It has been assumed that the continuum permittivity does not depend on density; in turn, pressure is calculated by standard formulas. In this work, we elaborate a complementary approximation of density-independent molecular polarizability and derive formulas for pressure corrections within the MDEC framework; real behavior lies between these two extremes. The pressure corrections for test ionic systems are huge and negative, leading to sizable densities in constant-pressure MDEC simulations. A comparison of MDEC results with equivalent polarizable systems gives a good pressure match for a crystal but very low MDEC pressures for ionic liquids. These results witness about the importance of a correct density dependence not only of continuum permittivity in MDEC simulations but also of polarizability in polarizable simulations. Copyright © 2020 American Chemical Society.
Název v anglickém jazyce
Pressure in Molecular Simulations with Scaled Charges. 1. Ionic Systems
Popis výsledku anglicky
Charge scaling, rationalized as MDEC (molecular dynamics in electronic continuum) or ECC (electronic continuum correction), has become a widely used simple approach to how to avoid self-consistent induced dipoles yet approximately take into account the effects of electronic polarizability. It has been assumed that the continuum permittivity does not depend on density; in turn, pressure is calculated by standard formulas. In this work, we elaborate a complementary approximation of density-independent molecular polarizability and derive formulas for pressure corrections within the MDEC framework; real behavior lies between these two extremes. The pressure corrections for test ionic systems are huge and negative, leading to sizable densities in constant-pressure MDEC simulations. A comparison of MDEC results with equivalent polarizable systems gives a good pressure match for a crystal but very low MDEC pressures for ionic liquids. These results witness about the importance of a correct density dependence not only of continuum permittivity in MDEC simulations but also of polarizability in polarizable simulations. Copyright © 2020 American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-16577S" target="_blank" >GA18-16577S: Kapky, led a aerosoly in silico: kombinace ab initio a klasických postupů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry B
ISSN
1520-6106
e-ISSN
—
Svazek periodika
124
Číslo periodika v rámci svazku
34
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
7379-7390
Kód UT WoS článku
000566758700006
EID výsledku v databázi Scopus
2-s2.0-85090076475