Molecular Dynamics of Heterogeneous Systems on GPUs and Their Application to Nucleation in Gas Expanding to a Vacuum
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43922296" target="_blank" >RIV/60461373:22340/21:43922296 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/21:00553346
Výsledek na webu
<a href="https://pubs.acs.org/doi/abs/10.1021/acs.jctc.1c00736" target="_blank" >https://pubs.acs.org/doi/abs/10.1021/acs.jctc.1c00736</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.1c00736" target="_blank" >10.1021/acs.jctc.1c00736</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular Dynamics of Heterogeneous Systems on GPUs and Their Application to Nucleation in Gas Expanding to a Vacuum
Popis výsledku v původním jazyce
Expansion of water vapor through a small orifice to a vacuum produces liquid or frozen clusters which in the experiment serve as model particles for atmospheric aerosols. Yet, there are controversies about the shape of these clusters, suggesting that the nucleation process is not fully understood. Such questions can be answered by molecular dynamics simulations; however, they require microsecond-scale runs with thousands of molecules and accurate energy conservation. The available highly parallel codes typically utilize domain decomposition and are inefficient for heterogeneous systems as clusters in a dilute gas. In this work, we present an implementation of molecular dynamics on graphics processing units based on the Verlet list and apply it to several systems for which experimental data are available. We reproduce sufficiently sized clusters but not the experimentally observed clusters of irregular shape.
Název v anglickém jazyce
Molecular Dynamics of Heterogeneous Systems on GPUs and Their Application to Nucleation in Gas Expanding to a Vacuum
Popis výsledku anglicky
Expansion of water vapor through a small orifice to a vacuum produces liquid or frozen clusters which in the experiment serve as model particles for atmospheric aerosols. Yet, there are controversies about the shape of these clusters, suggesting that the nucleation process is not fully understood. Such questions can be answered by molecular dynamics simulations; however, they require microsecond-scale runs with thousands of molecules and accurate energy conservation. The available highly parallel codes typically utilize domain decomposition and are inefficient for heterogeneous systems as clusters in a dilute gas. In this work, we present an implementation of molecular dynamics on graphics processing units based on the Verlet list and apply it to several systems for which experimental data are available. We reproduce sufficiently sized clusters but not the experimentally observed clusters of irregular shape.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
"7397–7405"
Kód UT WoS článku
000752980200008
EID výsledku v databázi Scopus
2-s2.0-85120382454