Decay of hydrogen bonding in mixtures of aliphatic heptanols and bistriflimide ionic liquids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43922440" target="_blank" >RIV/60461373:22340/21:43922440 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1039/D1CP03717J" target="_blank" >https://doi.org/10.1039/D1CP03717J</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/D1CP03717J" target="_blank" >10.1039/D1CP03717J</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decay of hydrogen bonding in mixtures of aliphatic heptanols and bistriflimide ionic liquids
Popis výsledku v původním jazyce
Hydrogen bonding in liquids of the constitution isomers of heptan-1-ol mixed with 1-alkyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs), [Cnmim][NTf2], is investigated using both computational and experimental techniques. All-atom non-polarizable molecular-dynamics (MD) simulations predict that the hydrogen bonds gradually decay with increasing temperature. This decay is more pronounced for the branched alcohols and in the presence of the ionic liquids. The primary and linear isomer, heptan-1-ol, and its tertiary and bulky analogue 3-ethylpentan-3-ol are identified as the opposite extremes of the spectrum of hydrogen bonding stability in the bulk liquid. While neat heptan-1-ol exhibits strong hydrogen bonding at 350 K, 3-ethylpentan-3-ol is prone to hydrogen bonding decay already at 300 K. The presence of ionic liquids is found to affect the hydrogen bonding comparably as a 50 K temperature increase. Since the heat capacities of the associating liquids are very sensitive to any variation in hydrogen bonding strength and to the character of the hydrogenbonded clusters in the bulk liquid, the calorimetric effort provides useful experimental data to confirm the results predicted by MD simulations. In this work, excess heat capacity is measured for equimolar single-phase mixtures of alcohols and ILs, and it differs largely in its sign and magnitude for individual heptanol isomers. Temperature trends of the excess heat capacities suggest that the stability of hydrogen bonding for individual heptanol isomers is temperature-shifted, based on their capability of hydrogen bonding. The predicted hierarchy of hydrogen bonding in individual alcohols and its impact on the excess heat capacity trends are qualitatively confirmed via thermodynamic modelling of the associative contribution to the excess heat capacities. These terms are found to predetermine the observed non-monotonous excess heat capacity trends.
Název v anglickém jazyce
Decay of hydrogen bonding in mixtures of aliphatic heptanols and bistriflimide ionic liquids
Popis výsledku anglicky
Hydrogen bonding in liquids of the constitution isomers of heptan-1-ol mixed with 1-alkyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs), [Cnmim][NTf2], is investigated using both computational and experimental techniques. All-atom non-polarizable molecular-dynamics (MD) simulations predict that the hydrogen bonds gradually decay with increasing temperature. This decay is more pronounced for the branched alcohols and in the presence of the ionic liquids. The primary and linear isomer, heptan-1-ol, and its tertiary and bulky analogue 3-ethylpentan-3-ol are identified as the opposite extremes of the spectrum of hydrogen bonding stability in the bulk liquid. While neat heptan-1-ol exhibits strong hydrogen bonding at 350 K, 3-ethylpentan-3-ol is prone to hydrogen bonding decay already at 300 K. The presence of ionic liquids is found to affect the hydrogen bonding comparably as a 50 K temperature increase. Since the heat capacities of the associating liquids are very sensitive to any variation in hydrogen bonding strength and to the character of the hydrogenbonded clusters in the bulk liquid, the calorimetric effort provides useful experimental data to confirm the results predicted by MD simulations. In this work, excess heat capacity is measured for equimolar single-phase mixtures of alcohols and ILs, and it differs largely in its sign and magnitude for individual heptanol isomers. Temperature trends of the excess heat capacities suggest that the stability of hydrogen bonding for individual heptanol isomers is temperature-shifted, based on their capability of hydrogen bonding. The predicted hierarchy of hydrogen bonding in individual alcohols and its impact on the excess heat capacity trends are qualitatively confirmed via thermodynamic modelling of the associative contribution to the excess heat capacities. These terms are found to predetermine the observed non-monotonous excess heat capacity trends.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-04150Y" target="_blank" >GJ19-04150Y: Kohezní vlastnosti a fázové rovnováhy iontových kapalin studovány přesnými výpočty a experimenty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
47
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
26874-26886
Kód UT WoS článku
000722655000001
EID výsledku v databázi Scopus
2-s2.0-85121267357