Model-Based Evaluation of Drying Kinetics and Solvent Diffusion in Pharmaceutical Thin Film Coatings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43924683" target="_blank" >RIV/60461373:22340/22:43924683 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11095-022-03352-5" target="_blank" >https://doi.org/10.1007/s11095-022-03352-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11095-022-03352-5" target="_blank" >10.1007/s11095-022-03352-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model-Based Evaluation of Drying Kinetics and Solvent Diffusion in Pharmaceutical Thin Film Coatings
Popis výsledku v původním jazyce
Fluid-bed coating processes make it possible to manufacture pharmaceutical products with tuneable properties. The choice of polymer type and coating thickness provides control over the drug release characteristics, and multi-layer pellet coatings can combine several active ingredients or achieve tailored drug release profiles. However, the fluid-bed coating is a parametrically sensitive process due to the simultaneous occurrence of polymer solution spraying and solvent evaporation. Designing a robust fluid-bed coating process requires the knowledge of thin film drying kinetics, which in turn critically depends on an accurate description of concentration-dependent solvent diffusion in the polymer. Methods: This work presents a mathematical model of thin film drying as an enabling tool for fluid-bed process design. A custom-built benchtop drying cell able to record and evaluate the drying kinetics of a chosen polymeric excipient has been constructed, validated, and used for data collection. Results: A semi-empirical mathematical model combining heat transfer, mass transfer, and film thickness evolution was formulated and used for estimating the solvent diffusion coefficient and solvent distribution in the polymer layer. The combined experimental and computational methodology was then used for analysing the drying kinetics of common polymeric excipients: poly(vinylpyrrolidone) and two grades of hydroxypropyl methylcellulose. Conclusions: The experimental setup together with the mathematical model represents a valuable tool for predictive modeling of pharmaceutical coating processes. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
Model-Based Evaluation of Drying Kinetics and Solvent Diffusion in Pharmaceutical Thin Film Coatings
Popis výsledku anglicky
Fluid-bed coating processes make it possible to manufacture pharmaceutical products with tuneable properties. The choice of polymer type and coating thickness provides control over the drug release characteristics, and multi-layer pellet coatings can combine several active ingredients or achieve tailored drug release profiles. However, the fluid-bed coating is a parametrically sensitive process due to the simultaneous occurrence of polymer solution spraying and solvent evaporation. Designing a robust fluid-bed coating process requires the knowledge of thin film drying kinetics, which in turn critically depends on an accurate description of concentration-dependent solvent diffusion in the polymer. Methods: This work presents a mathematical model of thin film drying as an enabling tool for fluid-bed process design. A custom-built benchtop drying cell able to record and evaluate the drying kinetics of a chosen polymeric excipient has been constructed, validated, and used for data collection. Results: A semi-empirical mathematical model combining heat transfer, mass transfer, and film thickness evolution was formulated and used for estimating the solvent diffusion coefficient and solvent distribution in the polymer layer. The combined experimental and computational methodology was then used for analysing the drying kinetics of common polymeric excipients: poly(vinylpyrrolidone) and two grades of hydroxypropyl methylcellulose. Conclusions: The experimental setup together with the mathematical model represents a valuable tool for predictive modeling of pharmaceutical coating processes. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26127X" target="_blank" >GX19-26127X: Robotický nano-lékárník: Výrobní procesy budoucnosti pro personalisovaná terapeutika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHARMACEUTICAL RESEARCH
ISSN
0724-8741
e-ISSN
1573-904X
Svazek periodika
39
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
2017-2031
Kód UT WoS článku
000836108200001
EID výsledku v databázi Scopus
2-s2.0-85135595839