Fully parallel solver for particle-resolved direct numerical simulation of flows laden with arbitrarily-shaped particles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F23%3A43928373" target="_blank" >RIV/60461373:22340/23:43928373 - isvavai.cz</a>
Výsledek na webu
<a href="https://sscheconference.sk/full_papers/553.pdf" target="_blank" >https://sscheconference.sk/full_papers/553.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fully parallel solver for particle-resolved direct numerical simulation of flows laden with arbitrarily-shaped particles
Popis výsledku v původním jazyce
The omnipresence of processes containing solids dispersed in the liquid phase in nature and industry creates a demand for fully resolved models that allow for detailed analysis and optimisation of these processes. A well-established approach to providing such models is a coupling of computational fluid dynamics (CFD) and discrete element method (DEM) via the variant of an immersed boundary method. The resulting CFD-DEM solver allows for direct numerical simulations of particle-laden flows, considering both particle-fluid and particle-particle interactions; due to the complexity of the collision dynamics between arbitrarily-shaped solids, the standard approach is replacing the complex shapes with spheres or clusters of spheres, which benefits from well-defined sphere-sphere interactions. However, this approximation is insufficient for describing coarse-grain slurries, e.g. catalyst deposition via washcoating. Therefore, in our in-house developed CFD-DEM solver, we employ a variant of the softDEM approach, characterising particle collisions by the overlap volume to allow the use of particles with a complex surface. The evaluation of the overlap volume is further optimised using the textit{virtual mesh} algorithm. In this work, we focus on further extending the capabilities of our solver to simulate processes with a high number of particle collisions, e.g. sedimentation or fluidisation. We shall introduce the parallelisation of the contact treatment in the context of the message-passing interface (MPI) approach imposed by the CFD method. Furthermore, we shall demonstrate a significant increase in computational efficiency in proof-of-concept simulations with hundreds of particles.
Název v anglickém jazyce
Fully parallel solver for particle-resolved direct numerical simulation of flows laden with arbitrarily-shaped particles
Popis výsledku anglicky
The omnipresence of processes containing solids dispersed in the liquid phase in nature and industry creates a demand for fully resolved models that allow for detailed analysis and optimisation of these processes. A well-established approach to providing such models is a coupling of computational fluid dynamics (CFD) and discrete element method (DEM) via the variant of an immersed boundary method. The resulting CFD-DEM solver allows for direct numerical simulations of particle-laden flows, considering both particle-fluid and particle-particle interactions; due to the complexity of the collision dynamics between arbitrarily-shaped solids, the standard approach is replacing the complex shapes with spheres or clusters of spheres, which benefits from well-defined sphere-sphere interactions. However, this approximation is insufficient for describing coarse-grain slurries, e.g. catalyst deposition via washcoating. Therefore, in our in-house developed CFD-DEM solver, we employ a variant of the softDEM approach, characterising particle collisions by the overlap volume to allow the use of particles with a complex surface. The evaluation of the overlap volume is further optimised using the textit{virtual mesh} algorithm. In this work, we focus on further extending the capabilities of our solver to simulate processes with a high number of particle collisions, e.g. sedimentation or fluidisation. We shall introduce the parallelisation of the contact treatment in the context of the message-passing interface (MPI) approach imposed by the CFD method. Furthermore, we shall demonstrate a significant increase in computational efficiency in proof-of-concept simulations with hundreds of particles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-12227S" target="_blank" >GA22-12227S: Počítačový návrh katalytických filtrů zohledňující vliv zachycených částic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 49th International conference of Slovak Society of Chemical Engineering
ISBN
978-80-8208-101-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Slovenská technická univerzita v Bratislave, Fakulta chemickej a potravinárskej technológie (FCHPT STU)
Místo vydání
Bratislava
Místo konání akce
Bratislava
Datum konání akce
15. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—