Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Methodology for fast testing of carbon-based nanostructured 3D electrodes in vanadium redox flow battery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F24%3A43930890" target="_blank" >RIV/60461373:22340/24:43930890 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85197771952" target="_blank" >https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85197771952</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.electacta.2024.144681" target="_blank" >10.1016/j.electacta.2024.144681</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Methodology for fast testing of carbon-based nanostructured 3D electrodes in vanadium redox flow battery

  • Popis výsledku v původním jazyce

    Progress in material chemistry is manifested daily by the variety of prepared functional materials, often with nanodimensional structuring. The electrodes for vanadium redox flow batteries have been shown to benefit from incorporating nanostructured materials such as carbon nanotubes. However, the methods of such incorporation are far from optimal, relying mainly on physical deposition or insertion into a binder. Here, we describe a technique for integrating carbon-based rod-like nanomaterials into a vanadium redox flow battery and a methodology for fast nanomaterial performance testing. The technique is based on creating a fixed nanomaterial bed sandwiched between two graphite felt electrodes, forming a 3D flow-through electrode in the battery. Performing various positive and negative control experiments, we show the beneficial effect of a nanostructured bed on the primary battery characteristics obtained from short-term electrochemical experiments. We characterize carbon nanotubes exhibiting promising electrochemical behavior in vanadium electrolytes, as observed in our previous study. The load curves obtained from charge-discharge steps at various current densities and electrolyte flow rates revealed considerable differences in the performance of the tested materials, with fewwalled carbon nanotubes reaching unsurpassable characteristics. At room temperature, with 50 %-SOC-working solutions and the highest tested linear velocity of 14.6 cm/min, the evaluated power density for this material reached values above 500 mW/cm2. For comparison, thermally treated graphite felt, used as a benchmark material, provided a power density of around 300 mW/cm2 under identical conditions. Although developed for vanadium redox flow batteries, the method enables testing tube-like and rod-like (nano-)materials for flow electrochemical systems.

  • Název v anglickém jazyce

    Methodology for fast testing of carbon-based nanostructured 3D electrodes in vanadium redox flow battery

  • Popis výsledku anglicky

    Progress in material chemistry is manifested daily by the variety of prepared functional materials, often with nanodimensional structuring. The electrodes for vanadium redox flow batteries have been shown to benefit from incorporating nanostructured materials such as carbon nanotubes. However, the methods of such incorporation are far from optimal, relying mainly on physical deposition or insertion into a binder. Here, we describe a technique for integrating carbon-based rod-like nanomaterials into a vanadium redox flow battery and a methodology for fast nanomaterial performance testing. The technique is based on creating a fixed nanomaterial bed sandwiched between two graphite felt electrodes, forming a 3D flow-through electrode in the battery. Performing various positive and negative control experiments, we show the beneficial effect of a nanostructured bed on the primary battery characteristics obtained from short-term electrochemical experiments. We characterize carbon nanotubes exhibiting promising electrochemical behavior in vanadium electrolytes, as observed in our previous study. The load curves obtained from charge-discharge steps at various current densities and electrolyte flow rates revealed considerable differences in the performance of the tested materials, with fewwalled carbon nanotubes reaching unsurpassable characteristics. At room temperature, with 50 %-SOC-working solutions and the highest tested linear velocity of 14.6 cm/min, the evaluated power density for this material reached values above 500 mW/cm2. For comparison, thermally treated graphite felt, used as a benchmark material, provided a power density of around 300 mW/cm2 under identical conditions. Although developed for vanadium redox flow batteries, the method enables testing tube-like and rod-like (nano-)materials for flow electrochemical systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20401 - Chemical engineering (plants, products)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_025%2F0007445" target="_blank" >EF16_025/0007445: Baterie na bázi organických redoxních látek pro energetiku tradičních i obnovitelných zdrojů.</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ELECTROCHIMICA ACTA

  • ISSN

    0013-4686

  • e-ISSN

    1873-3859

  • Svazek periodika

    498

  • Číslo periodika v rámci svazku

    144681

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001269005600001

  • EID výsledku v databázi Scopus

    2-s2.0-85197771952