Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F24%3A43930961" target="_blank" >RIV/60461373:22340/24:43930961 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02549" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02549</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.4c02549" target="_blank" >10.1021/acs.jpclett.4c02549</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost
Popis výsledku v původním jazyce
Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work. © 2024 The Authors. Published by American Chemical Society.
Název v anglickém jazyce
Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost
Popis výsledku anglicky
Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work. © 2024 The Authors. Published by American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07066S" target="_blank" >GA23-07066S: Časově závislé simulace pro časově rozlišené elektronové spektroskopie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry Letters
ISSN
1948-7185
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
42
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
10614-10622
Kód UT WoS článku
001333407000001
EID výsledku v databázi Scopus
2-s2.0-85206632703