Impact, Trapping, and Accommodation of Hydroxyl Radical and Ozone at Salt Aerosol Surfaces: A Molecular Dynamics Study.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F03%3A54030210" target="_blank" >RIV/61388955:_____/03:54030210 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact, Trapping, and Accommodation of Hydroxyl Radical and Ozone at Salt Aerosol Surfaces: A Molecular Dynamics Study.
Popis výsledku v původním jazyce
Collisions of the gaseous hydroxyl radical and ozone with surfaces of sodium chloride or iodide solutions as well as with the surface of neat water were investigated by molecular dynamics simulations. The principal aim was to answer atmospherically relevant questions concerning trapping and accommodation of the OH and O3 species at the surface and their uptake into the bulk solution. Although trapping is substantial for both species, OH adsorbs and absorbs significantly better than O3. While most of thetrapped ozone molecules desorb from the surface within 50 ps, a significant fraction of hydroxyl radicals remains at the interface for time intervals. The aqueous surface has also an orientational effect on the OH species, favoring geometries with the hydrogen pointing to the aqueous bulk. The effect of the dissolved salt on the trapping efficiency is minor, therefore, most likely, atomic ions solvated in aqueous aerosols do not act as scavengers of reactive gases in the atmosphere.
Název v anglickém jazyce
Impact, Trapping, and Accommodation of Hydroxyl Radical and Ozone at Salt Aerosol Surfaces: A Molecular Dynamics Study.
Popis výsledku anglicky
Collisions of the gaseous hydroxyl radical and ozone with surfaces of sodium chloride or iodide solutions as well as with the surface of neat water were investigated by molecular dynamics simulations. The principal aim was to answer atmospherically relevant questions concerning trapping and accommodation of the OH and O3 species at the surface and their uptake into the bulk solution. Although trapping is substantial for both species, OH adsorbs and absorbs significantly better than O3. While most of thetrapped ozone molecules desorb from the surface within 50 ps, a significant fraction of hydroxyl radicals remains at the interface for time intervals. The aqueous surface has also an orientational effect on the OH species, favoring geometries with the hydrogen pointing to the aqueous bulk. The effect of the dissolved salt on the trapping efficiency is minor, therefore, most likely, atomic ions solvated in aqueous aerosols do not act as scavengers of reactive gases in the atmosphere.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LN00A032" target="_blank" >LN00A032: Struktura a dynamika komplexních molekulových systémů a biomolekul</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry. B
ISSN
1089-5647
e-ISSN
—
Svazek periodika
107
Číslo periodika v rámci svazku
N/A
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
12690-12699
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—