Use of graphics processing units for efficient evaluation of derivatives of exchange integrals by means of Fourier transform of the 1/r operator and its numerical quadrature
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F15%3A00448877" target="_blank" >RIV/61388955:_____/15:00448877 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00214-015-1701-z" target="_blank" >http://dx.doi.org/10.1007/s00214-015-1701-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00214-015-1701-z" target="_blank" >10.1007/s00214-015-1701-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use of graphics processing units for efficient evaluation of derivatives of exchange integrals by means of Fourier transform of the 1/r operator and its numerical quadrature
Popis výsledku v původním jazyce
In this paper, we propose an efficient way for evaluation of derivatives of exchange integrals. We propose an approach in which we factorize the non-local exchange kernel into a sum of separable terms. We exploit a discretized Fourier transform for the 1/r operator, and we devise a method that allows us to employ a manageable number of plane-wave functions in the Fourier expansion while still keeping necessary accuracy. Resulting formulas are amenable for efficient evaluation on graphics processing units (GPU). We discuss the GPU implementation for derivatives of two-electron repulsion integrals of the (gk|gk) type in the hybrid Gaussian and plane-wave basis. Derivatives of such integrals are needed for computation of cross sections in vibrationally inelastic electron scattering by polyatomic molecules. Speedup and accuracy achieved are demonstrated for cross sections of selected vibrational modes of cyclopropane, benzene and adamantane. The proposed factorization method is general and may be applied to any type of exchange integrals. We note briefly on its possible application to exchange integrals and their derivatives in quantum chemical computational methods.
Název v anglickém jazyce
Use of graphics processing units for efficient evaluation of derivatives of exchange integrals by means of Fourier transform of the 1/r operator and its numerical quadrature
Popis výsledku anglicky
In this paper, we propose an efficient way for evaluation of derivatives of exchange integrals. We propose an approach in which we factorize the non-local exchange kernel into a sum of separable terms. We exploit a discretized Fourier transform for the 1/r operator, and we devise a method that allows us to employ a manageable number of plane-wave functions in the Fourier expansion while still keeping necessary accuracy. Resulting formulas are amenable for efficient evaluation on graphics processing units (GPU). We discuss the GPU implementation for derivatives of two-electron repulsion integrals of the (gk|gk) type in the hybrid Gaussian and plane-wave basis. Derivatives of such integrals are needed for computation of cross sections in vibrationally inelastic electron scattering by polyatomic molecules. Speedup and accuracy achieved are demonstrated for cross sections of selected vibrational modes of cyclopropane, benzene and adamantane. The proposed factorization method is general and may be applied to any type of exchange integrals. We note briefly on its possible application to exchange integrals and their derivatives in quantum chemical computational methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Chemistry Accounts
ISSN
1432-881X
e-ISSN
—
Svazek periodika
134
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
102
Kód UT WoS článku
000411071000001
EID výsledku v databázi Scopus
2-s2.0-84938600418