Simulation of Raman optical activity of multi-component monosaccharide samples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F16%3A00452695" target="_blank" >RIV/61388955:_____/16:00452695 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388963:_____/16:00452695
Výsledek na webu
<a href="http://dx.doi.org/10.1039/c5cp04111b" target="_blank" >http://dx.doi.org/10.1039/c5cp04111b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c5cp04111b" target="_blank" >10.1039/c5cp04111b</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulation of Raman optical activity of multi-component monosaccharide samples
Popis výsledku v původním jazyce
Determination of saccharide structure in solution is a laborious process that can be significantly enhanced by optical spectroscopies. Raman optical activity (ROA) spectra are particularly sensitive to the chirality and conformation. However, the interpretation of them is largely dependent on computational tools providing a limited precision only. To understand the limitations and the link between spectral shapes and the structure, in the present study we measured and interpreted using a combination of molecular dynamics (MD) and density functional theory (DFT) Raman and ROA spectra of glucose and mannose solutions. Factors important for analyses of mixtures of conformers, anomers, and different monosaccharides are discussed as well. The accuracy of the simulations was found to be strongly dependent on the quality of the hydration model; the dielectric continuum solvent model provided lower accuracy than averaging of many solvent-solute clusters. This was due to different conformer weighting rather than direct involvement of water molecules in scattering recorded as ROA. However, the cluster-based simulations also failed to correctly reproduce the ratios of principal monosaccharide forms. The best results were obtained by a combined MD/DFT simulation, with the ratio of α- and β- anomers and the –CH2OH group rotamers determined experimentally by NMR. Then a decomposition of experimental spectra into calculated subspectra provided realistic results even for the glucose and mannose mixtures. Raman spectra decomposition provided a better overall accuracy (5%) than ROA (10%). The combination of vibrational spectroscopy with theoretical simulations represents a powerful tool for analysing saccharide structure. Conversely, the ROA and Raman data can be used to verify the quality of MD force fields and other parameters of computational modeling.
Název v anglickém jazyce
Simulation of Raman optical activity of multi-component monosaccharide samples
Popis výsledku anglicky
Determination of saccharide structure in solution is a laborious process that can be significantly enhanced by optical spectroscopies. Raman optical activity (ROA) spectra are particularly sensitive to the chirality and conformation. However, the interpretation of them is largely dependent on computational tools providing a limited precision only. To understand the limitations and the link between spectral shapes and the structure, in the present study we measured and interpreted using a combination of molecular dynamics (MD) and density functional theory (DFT) Raman and ROA spectra of glucose and mannose solutions. Factors important for analyses of mixtures of conformers, anomers, and different monosaccharides are discussed as well. The accuracy of the simulations was found to be strongly dependent on the quality of the hydration model; the dielectric continuum solvent model provided lower accuracy than averaging of many solvent-solute clusters. This was due to different conformer weighting rather than direct involvement of water molecules in scattering recorded as ROA. However, the cluster-based simulations also failed to correctly reproduce the ratios of principal monosaccharide forms. The best results were obtained by a combined MD/DFT simulation, with the ratio of α- and β- anomers and the –CH2OH group rotamers determined experimentally by NMR. Then a decomposition of experimental spectra into calculated subspectra provided realistic results even for the glucose and mannose mixtures. Raman spectra decomposition provided a better overall accuracy (5%) than ROA (10%). The combination of vibrational spectroscopy with theoretical simulations represents a powerful tool for analysing saccharide structure. Conversely, the ROA and Raman data can be used to verify the quality of MD force fields and other parameters of computational modeling.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
2130-2142
Kód UT WoS článku
000369482100086
EID výsledku v databázi Scopus
2-s2.0-84954118247