Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F16%3A00457556" target="_blank" >RIV/61388955:_____/16:00457556 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/0022-3727/49/11/114002" target="_blank" >http://dx.doi.org/10.1088/0022-3727/49/11/114002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0022-3727/49/11/114002" target="_blank" >10.1088/0022-3727/49/11/114002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains
Popis výsledku v původním jazyce
It has been shown by means of simulations that spot variation fluorescence correlation/nspectroscopy (sv-FCS) can be used for the identification and, to some extent, also/ncharacterization of immobile lipid nanodomains in model as well as cellular plasma/nmembranes. However, in these simulations, the nanodomains were assumed to be stationary,/nwhereas they actually tend to move like the surrounding lipids. In the present study, we/ninvestigated how such domain movement influences the diffusion time/spot-size dependence/nobserved in FCS experiments, usually referred to as diffusion law’ analysis. We show/nthat domain movement might mask the effects of the anomalous’ diffusion characteristics/nof membrane lipids or proteins predicted for stationary domains, making it difficult to/nidentify such moving nanodomains by sv-FCS. More specifically, our simulations indicate/nthat (i) for domains moving up to a factor of 2.25 slower than the surrounding lipids, such/nimpeded diffusion cannot be observed and the diffusion behaviour of the proteins or lipids is/nindistinguishable from that of freely diffusing molecules, i.e. nanodomains are not detected;/n(ii) impeded protein/lipid diffusion behaviour can be observed in experiments where the radii/nof the detection volume are similar in size to the domain radii, the domain diffusion is about/n10 times slower than that of the lipids, and the probes show a high affinity to the domains;/nand (iii) presence of nanodomains can only be reliably detected by diffraction limited sv-FCS/nwhen the domains move very slowly (about 200 times slower than the lipid diffusion). As/nnanodomains are expected to be in the range of tens of nanometres and most probes show/nlow affinities to such domains, sv-FCS is limited to stationary domains and/or STED-FCS./nHowever, even for that latter technique, diffusing domains smaller than 50 nm in radius are/nhardly detectable by FCS diffusion time/spot-size dependencies.
Název v anglickém jazyce
Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains
Popis výsledku anglicky
It has been shown by means of simulations that spot variation fluorescence correlation/nspectroscopy (sv-FCS) can be used for the identification and, to some extent, also/ncharacterization of immobile lipid nanodomains in model as well as cellular plasma/nmembranes. However, in these simulations, the nanodomains were assumed to be stationary,/nwhereas they actually tend to move like the surrounding lipids. In the present study, we/ninvestigated how such domain movement influences the diffusion time/spot-size dependence/nobserved in FCS experiments, usually referred to as diffusion law’ analysis. We show/nthat domain movement might mask the effects of the anomalous’ diffusion characteristics/nof membrane lipids or proteins predicted for stationary domains, making it difficult to/nidentify such moving nanodomains by sv-FCS. More specifically, our simulations indicate/nthat (i) for domains moving up to a factor of 2.25 slower than the surrounding lipids, such/nimpeded diffusion cannot be observed and the diffusion behaviour of the proteins or lipids is/nindistinguishable from that of freely diffusing molecules, i.e. nanodomains are not detected;/n(ii) impeded protein/lipid diffusion behaviour can be observed in experiments where the radii/nof the detection volume are similar in size to the domain radii, the domain diffusion is about/n10 times slower than that of the lipids, and the probes show a high affinity to the domains;/nand (iii) presence of nanodomains can only be reliably detected by diffraction limited sv-FCS/nwhen the domains move very slowly (about 200 times slower than the lipid diffusion). As/nnanodomains are expected to be in the range of tens of nanometres and most probes show/nlow affinities to such domains, sv-FCS is limited to stationary domains and/or STED-FCS./nHowever, even for that latter technique, diffusing domains smaller than 50 nm in radius are/nhardly detectable by FCS diffusion time/spot-size dependencies.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GC14-03141J" target="_blank" >GC14-03141J: Studium vztahu struktury a funkce FGF2 oligomerů tvořících membránové póry technikami zaměřenými na sledování jedné molekuly</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics D-Applied Physics
ISSN
0022-3727
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000371007100003
EID výsledku v databázi Scopus
2-s2.0-84960096929