Effects of collision energy and vibrational excitation of CH3+ cations on its reactivity with hydrocarbons: But-2-yne CH3CCCH3 as reagent partner
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F17%3A00482743" target="_blank" >RIV/61388955:_____/17:00482743 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/1.4990514" target="_blank" >http://dx.doi.org/10.1063/1.4990514</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4990514" target="_blank" >10.1063/1.4990514</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of collision energy and vibrational excitation of CH3+ cations on its reactivity with hydrocarbons: But-2-yne CH3CCCH3 as reagent partner
Popis výsledku v původním jazyce
The methyl carbocation is ubiquitous in gaseous environments, such as planetary ionospheres, cometary comae, and the interstellar medium, as well as combustion systems and plasma setups for technological applications. Here we report on a joint experimental and theoretical study on the mechanism of the reaction CH3+ + CH3CCCH3 (but-2-yne, also known as dimethylacetylene), by combining guided ion beam mass spectrometry experiments with ab initio calculations of the potential energy hypersurface. Such a reaction is relevant in understanding the chemical evolution of Saturn's largest satellite, Titan. Two complementary setups have been used: in one case, methyl cations are generated via electron ionization, while in the other case, direct vacuum ultraviolet photoionization with synchrotron radiation of methyl radicals is used to study internal energy effects on the reactivity. Absolute reactive cross sections have been measured as a function of collision energy, and product branching ratios have been derived. The two most abundant products result from electron and hydride transfer, occurring via direct and barrierless mechanisms, while other channels are initiated by the electrophilic addition of the methyl cation to the triple bond of but-2-yne. Among the minor channels, special relevance is placed on the formation of C5H7+, stemming from H-2 loss from the addition complex. This is the only observed condensation product with the formation of new C-C bonds, and it might represent a viable pathway for the synthesis of complex organic species in astronomical environments and laboratory plasmas. Published by AIP Publishing.
Název v anglickém jazyce
Effects of collision energy and vibrational excitation of CH3+ cations on its reactivity with hydrocarbons: But-2-yne CH3CCCH3 as reagent partner
Popis výsledku anglicky
The methyl carbocation is ubiquitous in gaseous environments, such as planetary ionospheres, cometary comae, and the interstellar medium, as well as combustion systems and plasma setups for technological applications. Here we report on a joint experimental and theoretical study on the mechanism of the reaction CH3+ + CH3CCCH3 (but-2-yne, also known as dimethylacetylene), by combining guided ion beam mass spectrometry experiments with ab initio calculations of the potential energy hypersurface. Such a reaction is relevant in understanding the chemical evolution of Saturn's largest satellite, Titan. Two complementary setups have been used: in one case, methyl cations are generated via electron ionization, while in the other case, direct vacuum ultraviolet photoionization with synchrotron radiation of methyl radicals is used to study internal energy effects on the reactivity. Absolute reactive cross sections have been measured as a function of collision energy, and product branching ratios have been derived. The two most abundant products result from electron and hydride transfer, occurring via direct and barrierless mechanisms, while other channels are initiated by the electrophilic addition of the methyl cation to the triple bond of but-2-yne. Among the minor channels, special relevance is placed on the formation of C5H7+, stemming from H-2 loss from the addition complex. This is the only observed condensation product with the formation of new C-C bonds, and it might represent a viable pathway for the synthesis of complex organic species in astronomical environments and laboratory plasmas. Published by AIP Publishing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Svazek periodika
147
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000413398700039
EID výsledku v databázi Scopus
2-s2.0-85031736473