Li insertion into Li4Ti5O12 spinel prepared by low temperature solid state route: Charge capability vs surface area
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F18%3A00487706" target="_blank" >RIV/61388955:_____/18:00487706 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/18:00487706
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.electacta.2018.01.171" target="_blank" >http://dx.doi.org/10.1016/j.electacta.2018.01.171</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2018.01.171" target="_blank" >10.1016/j.electacta.2018.01.171</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Li insertion into Li4Ti5O12 spinel prepared by low temperature solid state route: Charge capability vs surface area
Popis výsledku v původním jazyce
Li4Ti5O12 spinel powders with different surface areas are prepared by a novel low temperature solid state route with subsequent mechanical disintegration. X-ray diffraction analysis proves the presence of majority of Li4Ti5O12 phase with small amount of rutile and WC impurities. Transmission electron microscopy analysis evidences the presence of two morphologies, larger Li4Ti5O12 crystals surrounded by nanocrystals of Li4Ti5O12. This finding is supported by cyclic voltammetry of Li insertion and electro-chemical impedance spectroscopy. The concentration ratio of these two morphologies in particular sample depends on its post ball milling time. Cyclic voltammetry of Li insertion and galvanostatic chronopotentiometry at 1C rate confirm the highest charge capacity for Li4Ti5O12 spinel with surface area of 21 m(2) g(-1). Due to optimized ratio of two particular morphologies this material (coded LTO_21) without any carbonaceous additive possesses excellent long time cycling stability during galvanostatic chronopotentiometry at 1, 2 and 5C. Its discharge capacities reach 170 mAh g(-1) at 1C, 167 mAh g(-1) at 2C and 160 mAh g(-1) at 5C rates with 100% coulombic efficiency. The capacity drop was less than 1% for charging rates of 1 and 2C and about 5% at 5C. The discharge capacity of all the reported samples significantly outperforms that of commercial lithium titanate (Aldrich) with surface area of 12.5 m(2) g(-1) exhibiting discharge capacities of 95 mAh g(-1) (cyclic voltammetry) and 77 mAh g(-1) or 35 mAh g(-1) in galvanostatic chronopotentiometry at 1 or 2C rates, respectively. Hence, our novel low temperature solid state route with subsequent mechanical disintegration represents energy saving pathway towards promising anode materials for fast and stable Li-ion batteries. (C) 2018 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Li insertion into Li4Ti5O12 spinel prepared by low temperature solid state route: Charge capability vs surface area
Popis výsledku anglicky
Li4Ti5O12 spinel powders with different surface areas are prepared by a novel low temperature solid state route with subsequent mechanical disintegration. X-ray diffraction analysis proves the presence of majority of Li4Ti5O12 phase with small amount of rutile and WC impurities. Transmission electron microscopy analysis evidences the presence of two morphologies, larger Li4Ti5O12 crystals surrounded by nanocrystals of Li4Ti5O12. This finding is supported by cyclic voltammetry of Li insertion and electro-chemical impedance spectroscopy. The concentration ratio of these two morphologies in particular sample depends on its post ball milling time. Cyclic voltammetry of Li insertion and galvanostatic chronopotentiometry at 1C rate confirm the highest charge capacity for Li4Ti5O12 spinel with surface area of 21 m(2) g(-1). Due to optimized ratio of two particular morphologies this material (coded LTO_21) without any carbonaceous additive possesses excellent long time cycling stability during galvanostatic chronopotentiometry at 1, 2 and 5C. Its discharge capacities reach 170 mAh g(-1) at 1C, 167 mAh g(-1) at 2C and 160 mAh g(-1) at 5C rates with 100% coulombic efficiency. The capacity drop was less than 1% for charging rates of 1 and 2C and about 5% at 5C. The discharge capacity of all the reported samples significantly outperforms that of commercial lithium titanate (Aldrich) with surface area of 12.5 m(2) g(-1) exhibiting discharge capacities of 95 mAh g(-1) (cyclic voltammetry) and 77 mAh g(-1) or 35 mAh g(-1) in galvanostatic chronopotentiometry at 1 or 2C rates, respectively. Hence, our novel low temperature solid state route with subsequent mechanical disintegration represents energy saving pathway towards promising anode materials for fast and stable Li-ion batteries. (C) 2018 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrochimica acta
ISSN
0013-4686
e-ISSN
—
Svazek periodika
265
Číslo periodika v rámci svazku
MAR 2018
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
480-487
Kód UT WoS článku
000425751600053
EID výsledku v databázi Scopus
2-s2.0-85041453395