Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin-Orbit Coupling and Density of States
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F18%3A00494128" target="_blank" >RIV/61388955:_____/18:00494128 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acs.jpca.8b05311" target="_blank" >http://dx.doi.org/10.1021/acs.jpca.8b05311</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.8b05311" target="_blank" >10.1021/acs.jpca.8b05311</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin-Orbit Coupling and Density of States
Popis výsledku v původním jazyce
Excited-state dynamics and electronic structures of Al and Ga corrole complexes were studied as a function of the number of β-pyrrole iodine substituents. Using spectrally broad-band femtosecond-resolved fluorescence upconversion, we determined the kinetics of the Soret fluorescence decay, the concomitant rise and subsequent decay of the Q-band fluorescence, as well as of the accompanying vibrational relaxation. Iodination was found to accelerate all involved processes. The time constant of the internal conversion from the Soret to the Q states decreases from 320-540 to 70-185 fs upon iodination. Vibrational relaxation then occurs with about 15 and 0.36-1.4 ps lifetime for iodine-free and iodinated complexes, respectively. Intersystem crossing to the lowest triplet is accelerated up to 200 times from nanoseconds to 15-24 ps. Its rate correlates with the iodine p(Ï€) participation in the corrole Ï€-system and the spin-orbit coupling (SOC) strength. TDDFT calculations with explicit SOC show that iodination introduces a manifold of low-lying singlet and triplet iodine ↠corrole charge-transfer (CT) states. These states affect the photophysics by (i) providing a relaxation cascade for the Soret ↠Q internal conversion and cooling and (ii) opening new SOC pathways whereby CT triplet character is admixed into both Q singlet excited states. In addition, SOC between the higher Q singlet and the Soret triplet is enhanced as the iodine participation in frontier corrole Ï€-orbitals increases. Our observations that iodination of the chromophore periphery affects the whole photocycle by changing the electronic structure, spin-orbit coupling, and the density of states rationalize the ´´heavy-atom effect´´ and have implications for controlling excited-state dynamics in a range of triplet photosensitizers.
Název v anglickém jazyce
Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin-Orbit Coupling and Density of States
Popis výsledku anglicky
Excited-state dynamics and electronic structures of Al and Ga corrole complexes were studied as a function of the number of β-pyrrole iodine substituents. Using spectrally broad-band femtosecond-resolved fluorescence upconversion, we determined the kinetics of the Soret fluorescence decay, the concomitant rise and subsequent decay of the Q-band fluorescence, as well as of the accompanying vibrational relaxation. Iodination was found to accelerate all involved processes. The time constant of the internal conversion from the Soret to the Q states decreases from 320-540 to 70-185 fs upon iodination. Vibrational relaxation then occurs with about 15 and 0.36-1.4 ps lifetime for iodine-free and iodinated complexes, respectively. Intersystem crossing to the lowest triplet is accelerated up to 200 times from nanoseconds to 15-24 ps. Its rate correlates with the iodine p(Ï€) participation in the corrole Ï€-system and the spin-orbit coupling (SOC) strength. TDDFT calculations with explicit SOC show that iodination introduces a manifold of low-lying singlet and triplet iodine ↠corrole charge-transfer (CT) states. These states affect the photophysics by (i) providing a relaxation cascade for the Soret ↠Q internal conversion and cooling and (ii) opening new SOC pathways whereby CT triplet character is admixed into both Q singlet excited states. In addition, SOC between the higher Q singlet and the Soret triplet is enhanced as the iodine participation in frontier corrole Ï€-orbitals increases. Our observations that iodination of the chromophore periphery affects the whole photocycle by changing the electronic structure, spin-orbit coupling, and the density of states rationalize the ´´heavy-atom effect´´ and have implications for controlling excited-state dynamics in a range of triplet photosensitizers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01137S" target="_blank" >GA17-01137S: Přenos elektronu v (bio)molekulárních systémech: časově rozlišená vibrační spektroskopie a teorie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry A
ISSN
1089-5639
e-ISSN
—
Svazek periodika
122
Číslo periodika v rámci svazku
37
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
7256-7266
Kód UT WoS článku
000445711900002
EID výsledku v databázi Scopus
2-s2.0-85053197585