Feasibility of application of iron zeolites for high-temperature decomposition of N2O under real conditions of the technology for nitric acid production
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F19%3A00481856" target="_blank" >RIV/61388955:_____/19:00481856 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10372289 RIV/60461373:22310/19:43918653
Výsledek na webu
<a href="http://hdl.handle.net/11104/0277319" target="_blank" >http://hdl.handle.net/11104/0277319</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apcatb.2017.11.014" target="_blank" >10.1016/j.apcatb.2017.11.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feasibility of application of iron zeolites for high-temperature decomposition of N2O under real conditions of the technology for nitric acid production
Popis výsledku v původním jazyce
The long-term stabilities of a group of iron zeolites with MFI, *BEA, and FER structures and similar Fe/Al ratios were evaluated to assess their performance as catalysts for N2O decomposition. Conditions relevant for the application of the catalyst at the secondary level for N2O elimination, i.e., directly after the NH3 oxidation step of the process of nitric acid production, were investigated. These conditions included reaction temperatures of up to 900 °C and the presence of high concentrations of water vapour, oxygen, and NO. The focus of the study was the comparison of the MFI and *BEA zeolites with the FER-based zeolite, a catalyst established as relatively stable under such conditions. The structural analysis of the individual zeolite frameworks and iron species involved a combination of several methods, and provided insight into the framework modification as well as identification and semiquantitative determination of the individual iron species. In the zeolite catalysts, these iron species were in the form of either isolated Fe(II) and Fe(III)-oxo ions, polynuclear Fe(III)-oxo complexes, or small Fe oxide particles. None of the zeolite structures displayed a high extent of structural collapse of the framework. Thus, structural collapse does not explain the observed decrease in activity. An investigation of the kinetics of the N2O decomposition, both before and after ageing under relevant reaction conditions, proved the dominant role of isolated Fe(II) ions that were accessible to the reacting gas-phase molecules. The kinetic study also identified the differences in the ability of the three zeolites to stabilize the active sites in individual framework types during long-term exposure to challenging reaction conditions.
Název v anglickém jazyce
Feasibility of application of iron zeolites for high-temperature decomposition of N2O under real conditions of the technology for nitric acid production
Popis výsledku anglicky
The long-term stabilities of a group of iron zeolites with MFI, *BEA, and FER structures and similar Fe/Al ratios were evaluated to assess their performance as catalysts for N2O decomposition. Conditions relevant for the application of the catalyst at the secondary level for N2O elimination, i.e., directly after the NH3 oxidation step of the process of nitric acid production, were investigated. These conditions included reaction temperatures of up to 900 °C and the presence of high concentrations of water vapour, oxygen, and NO. The focus of the study was the comparison of the MFI and *BEA zeolites with the FER-based zeolite, a catalyst established as relatively stable under such conditions. The structural analysis of the individual zeolite frameworks and iron species involved a combination of several methods, and provided insight into the framework modification as well as identification and semiquantitative determination of the individual iron species. In the zeolite catalysts, these iron species were in the form of either isolated Fe(II) and Fe(III)-oxo ions, polynuclear Fe(III)-oxo complexes, or small Fe oxide particles. None of the zeolite structures displayed a high extent of structural collapse of the framework. Thus, structural collapse does not explain the observed decrease in activity. An investigation of the kinetics of the N2O decomposition, both before and after ageing under relevant reaction conditions, proved the dominant role of isolated Fe(II) ions that were accessible to the reacting gas-phase molecules. The kinetic study also identified the differences in the ability of the three zeolites to stabilize the active sites in individual framework types during long-term exposure to challenging reaction conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Catalysis B - Environmental
ISSN
0926-3373
e-ISSN
—
Svazek periodika
240
Číslo periodika v rámci svazku
JAN 2019
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
358-366
Kód UT WoS článku
000461002800034
EID výsledku v databázi Scopus
2-s2.0-85033598876