Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F19%3A00507980" target="_blank" >RIV/61388955:_____/19:00507980 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0298945" target="_blank" >http://hdl.handle.net/11104/0298945</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/2058-9565/ab3951" target="_blank" >10.1088/2058-9565/ab3951</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer
Popis výsledku v původním jazyce
Quantum simulations are bound to be one of the main applications of near-term quantum computers. Quantum chemistry and condensed matter physics are expected to benefit from these technological developments. Several quantum simulation methods are known to prepare a state on a quantum computer and measure the desired observables. The most resource economic procedure is the variational quantum eigensolver (VQE), which has traditionally employed unitary coupled cluster as the ansatz to approximate ground states of many-body fermionic Hamiltonians. A significant caveat of the method is that the initial state of the procedure is a single reference product state from a classical Hartree–Fock calculation with no pairing correlations, hence it cannot represent superconducting states. In this work, we propose to improve the method by initializing the algorithm with a more general fermionic Gaussian state, an idea borrowed from the field of nuclear physics. We show how this Gaussian reference state can be prepared with a linear-depth circuit of quantum matchgates. By augmenting the set of available gates with nearest-neighbor phase coupling, we generate a low-depth circuit ansatz that can accurately prepare the ground state of correlated fermionic systems. This extends the range of applicability of the VQE to systems with strong pairing correlations such as superconductors, atomic nuclei, and topological materials.n
Název v anglickém jazyce
Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer
Popis výsledku anglicky
Quantum simulations are bound to be one of the main applications of near-term quantum computers. Quantum chemistry and condensed matter physics are expected to benefit from these technological developments. Several quantum simulation methods are known to prepare a state on a quantum computer and measure the desired observables. The most resource economic procedure is the variational quantum eigensolver (VQE), which has traditionally employed unitary coupled cluster as the ansatz to approximate ground states of many-body fermionic Hamiltonians. A significant caveat of the method is that the initial state of the procedure is a single reference product state from a classical Hartree–Fock calculation with no pairing correlations, hence it cannot represent superconducting states. In this work, we propose to improve the method by initializing the algorithm with a more general fermionic Gaussian state, an idea borrowed from the field of nuclear physics. We show how this Gaussian reference state can be prepared with a linear-depth circuit of quantum matchgates. By augmenting the set of available gates with nearest-neighbor phase coupling, we generate a low-depth circuit ansatz that can accurately prepare the ground state of correlated fermionic systems. This extends the range of applicability of the VQE to systems with strong pairing correlations such as superconductors, atomic nuclei, and topological materials.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quantum Science and Technology
ISSN
2058-9565
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
045005
Kód UT WoS článku
000484173900001
EID výsledku v databázi Scopus
2-s2.0-85079572934