Raman Fingerprint of Pressure-Induced Phase Transitions in TiS3 Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00532319" target="_blank" >RIV/61388955:_____/20:00532319 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0310836" target="_blank" >http://hdl.handle.net/11104/0310836</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.0c01583" target="_blank" >10.1021/acsanm.0c01583</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Raman Fingerprint of Pressure-Induced Phase Transitions in TiS3 Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions
Popis výsledku v původním jazyce
Two-dimensional layered trichalcogenide materials have recently attracted the attention of the scientific community because of their robust mechanical and thermal properties and applications in opto- and nanoelectronics devices. We report the pressure dependence of out-of-plane Ag Raman modes in high quality few-layer titanium trisulfide (TiS3) nanoribbons grown using a direct solid–gas reaction method and infer their cross-plane thermal expansion coefficient. Both mechanical stability and thermal properties of the TiS3 nanoribbons are elucidated by using phonon-spectrum analyses. Raman spectroscopic studies at high pressure (up to 34 GPa) using a diamond anvil cell identify four prominent Ag Raman bands, a band at 557 cm–1 softens under compression, and others at 175, 300, and 370 cm–1 show normal hardening. Anomalies in phonon mode frequencies and excessive broadening in line width of the soft phonon about 13 GPa are attributed to the possible onset of a reversible structural transition. A complete structural phase transition at 43 GPa is inferred from the Ag soft mode frequency (557 cm–1) versus pressure extrapolation curve, consistent with recently reported theoretical predictions. Using the experimental mode Grüneisen parameters γi of Raman modes, we estimated the cross-plane thermal expansion coefficient Cv of the TiS3 nanoribbons at ambient phase to be 1.321 × 10–6 K–1. The observed results are expected to be useful in calibration and performance of next-generation nanoelectronics and optical devices under extreme stress conditions.
Název v anglickém jazyce
Raman Fingerprint of Pressure-Induced Phase Transitions in TiS3 Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions
Popis výsledku anglicky
Two-dimensional layered trichalcogenide materials have recently attracted the attention of the scientific community because of their robust mechanical and thermal properties and applications in opto- and nanoelectronics devices. We report the pressure dependence of out-of-plane Ag Raman modes in high quality few-layer titanium trisulfide (TiS3) nanoribbons grown using a direct solid–gas reaction method and infer their cross-plane thermal expansion coefficient. Both mechanical stability and thermal properties of the TiS3 nanoribbons are elucidated by using phonon-spectrum analyses. Raman spectroscopic studies at high pressure (up to 34 GPa) using a diamond anvil cell identify four prominent Ag Raman bands, a band at 557 cm–1 softens under compression, and others at 175, 300, and 370 cm–1 show normal hardening. Anomalies in phonon mode frequencies and excessive broadening in line width of the soft phonon about 13 GPa are attributed to the possible onset of a reversible structural transition. A complete structural phase transition at 43 GPa is inferred from the Ag soft mode frequency (557 cm–1) versus pressure extrapolation curve, consistent with recently reported theoretical predictions. Using the experimental mode Grüneisen parameters γi of Raman modes, we estimated the cross-plane thermal expansion coefficient Cv of the TiS3 nanoribbons at ambient phase to be 1.321 × 10–6 K–1. The observed results are expected to be useful in calibration and performance of next-generation nanoelectronics and optical devices under extreme stress conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008355" target="_blank" >EF16_027/0008355: Implementace pokročilých fyzikálně-chemických přístupů pro studium moderních materiálů a bio/chemických procesů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS APPLIED NANO MATERIALS
ISSN
2574-0970
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
8794-8802
Kód UT WoS článku
000575846000027
EID výsledku v databázi Scopus
2-s2.0-85094647585