Use of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO<inf>2</inf> for an efficient photoreduction of CO<inf>2</inf> to methanol
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00532038" target="_blank" >RIV/61388955:_____/21:00532038 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0310647" target="_blank" >http://hdl.handle.net/11104/0310647</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2020.126643" target="_blank" >10.1016/j.cej.2020.126643</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO<inf>2</inf> for an efficient photoreduction of CO<inf>2</inf> to methanol
Popis výsledku v původním jazyce
The slow kinetics in the photocatalytic reduction of CO2, as well as the low quantum efficiencies achieved, directly related to the photocatalyst and reactor configuration applied, limit the widespread use of this technology. In light of this, the main objective of this work is to evaluate the continuous photocatalytic conversion of CO2 into methanol in an optofluidic microreactor (with enhanced mass transport, large volume/active area ratio and uniform light distribution) using Cu nanoparticles synthesized in the hydrophilic 3-methyl-n-butylimidazolium tetrafluoroborate (BMIm.BF4) ionic liquid and embedded in TiO2 (P25). The ionic liquid not only acts as a template to control the size of the nanoparticles but also as a stabilizing agent. The analysis includes the effect of structural parameters of the photoactive layer such as Cu content (from 0.8 to 6.8 wt%) and photocatalyst loading (0.5–3 mg·cm−2), as well as operating variables such as UV and visible light intensities (2.5–10 mW·cm−2) and cell configuration (i.e. one or two compartments). The maximum methanol yield reached from the continuous transformation of CO2 is r = 230.3 µmol∙g−1∙h−1 at 2 wt% Cu content, photocatalyst loading of 2 mg·cm−2, UV light intensity of 10 mW·cm−2 and a two-compartment microreactor configuration. This result outperforms the values previously reported for Cu/TiO2-based systems using optofluidic microreactors, as well as most of those in common CO2 photoreactors.
Název v anglickém jazyce
Use of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO<inf>2</inf> for an efficient photoreduction of CO<inf>2</inf> to methanol
Popis výsledku anglicky
The slow kinetics in the photocatalytic reduction of CO2, as well as the low quantum efficiencies achieved, directly related to the photocatalyst and reactor configuration applied, limit the widespread use of this technology. In light of this, the main objective of this work is to evaluate the continuous photocatalytic conversion of CO2 into methanol in an optofluidic microreactor (with enhanced mass transport, large volume/active area ratio and uniform light distribution) using Cu nanoparticles synthesized in the hydrophilic 3-methyl-n-butylimidazolium tetrafluoroborate (BMIm.BF4) ionic liquid and embedded in TiO2 (P25). The ionic liquid not only acts as a template to control the size of the nanoparticles but also as a stabilizing agent. The analysis includes the effect of structural parameters of the photoactive layer such as Cu content (from 0.8 to 6.8 wt%) and photocatalyst loading (0.5–3 mg·cm−2), as well as operating variables such as UV and visible light intensities (2.5–10 mW·cm−2) and cell configuration (i.e. one or two compartments). The maximum methanol yield reached from the continuous transformation of CO2 is r = 230.3 µmol∙g−1∙h−1 at 2 wt% Cu content, photocatalyst loading of 2 mg·cm−2, UV light intensity of 10 mW·cm−2 and a two-compartment microreactor configuration. This result outperforms the values previously reported for Cu/TiO2-based systems using optofluidic microreactors, as well as most of those in common CO2 photoreactors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
1873-3212
Svazek periodika
404
Číslo periodika v rámci svazku
JAN 2021
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
126643
Kód UT WoS článku
000601348100006
EID výsledku v databázi Scopus
2-s2.0-85089425202