Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Photoinduced hole hopping through tryptophans in proteins

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Photoinduced hole hopping through tryptophans in proteins

  • Popis výsledku v původním jazyce

    Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuIto the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+--W1(-W2) exhibited crossings between sensitizer-localized (∗Re) and charge-separated [ReI(His)(CO)3(dmp•-)/(W1•+or W2•+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Waterdominated electrostatic field fluctuations bring ∗Re and CS1 states to a crossing where ∗Re(CO)3(dmp)+←W1ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around ∗Re(CO)3(dmp)+(W1), and CS1 is stabilized by Re(dmp•-)/W1•+electron/hole interaction and enhanced W1•+solvation. The second hop, W1•+←W2, is facilitated by water fluctuations near the W1/W2unit, taking place when the electrostatic potential at W2drops well below that at W1•+. Insufficient solvation and reorganization around W2make W1•+←W2ET endergonic, shifting the equilibrium toward W1•+and decreasing the charge-separation yield. We suggest that multiscale TDDFT/ MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds.

  • Název v anglickém jazyce

    Photoinduced hole hopping through tryptophans in proteins

  • Popis výsledku anglicky

    Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuIto the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+--W1(-W2) exhibited crossings between sensitizer-localized (∗Re) and charge-separated [ReI(His)(CO)3(dmp•-)/(W1•+or W2•+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Waterdominated electrostatic field fluctuations bring ∗Re and CS1 states to a crossing where ∗Re(CO)3(dmp)+←W1ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around ∗Re(CO)3(dmp)+(W1), and CS1 is stabilized by Re(dmp•-)/W1•+electron/hole interaction and enhanced W1•+solvation. The second hop, W1•+←W2, is facilitated by water fluctuations near the W1/W2unit, taking place when the electrostatic potential at W2drops well below that at W1•+. Insufficient solvation and reorganization around W2make W1•+←W2ET endergonic, shifting the equilibrium toward W1•+and decreasing the charge-separation yield. We suggest that multiscale TDDFT/ MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds.

Klasifikace

  • Druh

    Jimp - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Proceedings of the National Academy of Sciences of the United States of America

  • ISSN

    0027-8424

  • e-ISSN

  • Svazek periodika

    118

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    e2024627118

  • Kód UT WoS článku

    000629635100086

  • EID výsledku v databázi Scopus

    2-s2.0-85102389679

Druh výsledku

Jimp - Článek v periodiku v databázi Web of Science

Jimp

OECD FORD

Physical chemistry

Rok uplatnění

2021