Electrochemical Reduction of Carbon Dioxide on 3D Printed Electrodes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00543197" target="_blank" >RIV/61388955:_____/21:00543197 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/21:43922690 RIV/60461373:22340/21:43922690
Výsledek na webu
<a href="http://hdl.handle.net/11104/0320468" target="_blank" >http://hdl.handle.net/11104/0320468</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/celc.202100261" target="_blank" >10.1002/celc.202100261</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrochemical Reduction of Carbon Dioxide on 3D Printed Electrodes
Popis výsledku v původním jazyce
Rising levels of atmospheric carbon dioxide (CO2) intensify global warming. Electrochemical reduction of CO2 allows its conversion into value-added chemicals. This work presents the first application of 3D printing to manufacture catalysts for this process. Carbon nanotube-based electrodes printed by fused deposition modeling were functionalized by copper electroplating. The combination of scanning electron microscopy and electrochemical characterization revealed that the electroplating leads to randomly positioned hemispherical copper microparticles with charge transfer characteristics approaching those of planar interfaces. The activity of catalysts was inspected in the saturated solution of CO2 in aqueous KHCO3 electrolyte by monitoring the concentration of formate (HCOO−) as one of reaction products. The Faradaic efficiency vs. electrode potential dependence found in this work is comparable to characteristics reported for conventionally prepared micro-structured copper catalysts. Procedures devised and implemented in this work pave the way for the development of 3D printed electrocatalysts with controlled micro-architecture, activity and product selectivity.n
Název v anglickém jazyce
Electrochemical Reduction of Carbon Dioxide on 3D Printed Electrodes
Popis výsledku anglicky
Rising levels of atmospheric carbon dioxide (CO2) intensify global warming. Electrochemical reduction of CO2 allows its conversion into value-added chemicals. This work presents the first application of 3D printing to manufacture catalysts for this process. Carbon nanotube-based electrodes printed by fused deposition modeling were functionalized by copper electroplating. The combination of scanning electron microscopy and electrochemical characterization revealed that the electroplating leads to randomly positioned hemispherical copper microparticles with charge transfer characteristics approaching those of planar interfaces. The activity of catalysts was inspected in the saturated solution of CO2 in aqueous KHCO3 electrolyte by monitoring the concentration of formate (HCOO−) as one of reaction products. The Faradaic efficiency vs. electrode potential dependence found in this work is comparable to characteristics reported for conventionally prepared micro-structured copper catalysts. Procedures devised and implemented in this work pave the way for the development of 3D printed electrocatalysts with controlled micro-architecture, activity and product selectivity.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ChemElectroChem
ISSN
2196-0216
e-ISSN
2196-0216
Svazek periodika
8
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
2137-2149
Kód UT WoS článku
000664241000023
EID výsledku v databázi Scopus
2-s2.0-85108297150