Abiotic Formation of Methane and Prebiotic Molecules on Mars and Other Planets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00543199" target="_blank" >RIV/61388955:_____/21:00543199 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/21:10442257
Výsledek na webu
<a href="http://hdl.handle.net/11104/0320469" target="_blank" >http://hdl.handle.net/11104/0320469</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsearthspacechem.1c00041" target="_blank" >10.1021/acsearthspacechem.1c00041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Abiotic Formation of Methane and Prebiotic Molecules on Mars and Other Planets
Popis výsledku v původním jazyce
We explored the photocatalytic (UV-driven) reduction of CO2 on mineral surfaces in acidic conditions and observed the production of methane. Based on our measured laboratory reaction rates, we estimate a 2.81 × 107 cm-2 s-1 methane surface flux on the current-day Mars. We also estimate a Martian methane destruction rate of 2.37 × 105 cm-2 s-1, which is 2 orders of magnitude less than the production rate. The flux of the photochemically produced methane therefore seems sufficient to explain the background levels of methane detected on Mars. This photocatalytic reduction is part of a proposed novel reaction network tightly bound to the chemistry of CO2 in planetary atmospheres described in this paper. The emergent methane-enriched atmosphere can be transformed by high-energy-density events on rocky planets to nucleic acid bases and amino acids. Finally, destructive processes, such as volcanic eruptions or lightning storms, can turn the synthesized products back into CO2 in any step. This proposed scenario should be, in our opinion, included in models of exoplanetary chemistry.
Název v anglickém jazyce
Abiotic Formation of Methane and Prebiotic Molecules on Mars and Other Planets
Popis výsledku anglicky
We explored the photocatalytic (UV-driven) reduction of CO2 on mineral surfaces in acidic conditions and observed the production of methane. Based on our measured laboratory reaction rates, we estimate a 2.81 × 107 cm-2 s-1 methane surface flux on the current-day Mars. We also estimate a Martian methane destruction rate of 2.37 × 105 cm-2 s-1, which is 2 orders of magnitude less than the production rate. The flux of the photochemically produced methane therefore seems sufficient to explain the background levels of methane detected on Mars. This photocatalytic reduction is part of a proposed novel reaction network tightly bound to the chemistry of CO2 in planetary atmospheres described in this paper. The emergent methane-enriched atmosphere can be transformed by high-energy-density events on rocky planets to nucleic acid bases and amino acids. Finally, destructive processes, such as volcanic eruptions or lightning storms, can turn the synthesized products back into CO2 in any step. This proposed scenario should be, in our opinion, included in models of exoplanetary chemistry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Earth and Space Chemistry
ISSN
2472-3452
e-ISSN
2472-3452
Svazek periodika
5
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
1172-1179
Kód UT WoS článku
000655638500017
EID výsledku v databázi Scopus
2-s2.0-85106408962