CO2 Methanation on Cu-Cluster Decorated Zirconia Supports with Different Morphology: A Combined Experimental In Situ GIXANES/GISAXS, Ex Situ XPS and Theoretical DFT Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00543566" target="_blank" >RIV/61388955:_____/21:00543566 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0320753" target="_blank" >http://hdl.handle.net/11104/0320753</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acscatal.0c05029" target="_blank" >10.1021/acscatal.0c05029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CO2 Methanation on Cu-Cluster Decorated Zirconia Supports with Different Morphology: A Combined Experimental In Situ GIXANES/GISAXS, Ex Situ XPS and Theoretical DFT Study
Popis výsledku v původním jazyce
Subnanometer copper tetramer-zirconia catalysts turn out to be highly efficient for CO2 hydrogenation and its conversion to methane. The cluster size and substrate morphology are controlled to optimize the catalytic performance. The two types of zirconia supports investigated are prepared by atomic layer deposition (μ3 nm thick film) and supersonic cluster beam deposition (nanostructured film, μ100 nm thick). The substrate plays a crucial role in determining the activity of the catalyst as well as its cyclability over repeated thermal ramps. A temperature-programmed reaction combined with in situ X-ray characterization reveals the correlation between the evolution in the oxidation state and catalytic activity. Ex situ photoelectron spectroscopy indicates Cu clusters with stronger interactions with the nanostructured film, which can be the cause for the higher activity of this catalyst. Density functional theory calculations based on the Cu4O2 cluster supported on a ZrOx subunit reveal low activation barriers and provide mechanism for CO2 hydrogenation and its conversion to methane. Altogether, the results show a new way to tune the catalytic activity of CO2 hydrogenation catalysts through controlling the morphology of the support at the nanoscale.
Název v anglickém jazyce
CO2 Methanation on Cu-Cluster Decorated Zirconia Supports with Different Morphology: A Combined Experimental In Situ GIXANES/GISAXS, Ex Situ XPS and Theoretical DFT Study
Popis výsledku anglicky
Subnanometer copper tetramer-zirconia catalysts turn out to be highly efficient for CO2 hydrogenation and its conversion to methane. The cluster size and substrate morphology are controlled to optimize the catalytic performance. The two types of zirconia supports investigated are prepared by atomic layer deposition (μ3 nm thick film) and supersonic cluster beam deposition (nanostructured film, μ100 nm thick). The substrate plays a crucial role in determining the activity of the catalyst as well as its cyclability over repeated thermal ramps. A temperature-programmed reaction combined with in situ X-ray characterization reveals the correlation between the evolution in the oxidation state and catalytic activity. Ex situ photoelectron spectroscopy indicates Cu clusters with stronger interactions with the nanostructured film, which can be the cause for the higher activity of this catalyst. Density functional theory calculations based on the Cu4O2 cluster supported on a ZrOx subunit reveal low activation barriers and provide mechanism for CO2 hydrogenation and its conversion to methane. Altogether, the results show a new way to tune the catalytic activity of CO2 hydrogenation catalysts through controlling the morphology of the support at the nanoscale.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Catalysis
ISSN
2155-5435
e-ISSN
2155-5435
Svazek periodika
11
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
6210-6224
Kód UT WoS článku
000656056200032
EID výsledku v databázi Scopus
2-s2.0-85106358211