Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00544961" target="_blank" >RIV/61388955:_____/21:00544961 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/21:00580138
Výsledek na webu
<a href="http://hdl.handle.net/11104/0321747" target="_blank" >http://hdl.handle.net/11104/0321747</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d1ta05324h" target="_blank" >10.1039/d1ta05324h</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?
Popis výsledku v původním jazyce
A new experimental method for the simultaneous determination of the electric and thermoelectric properties of metal-molecule-metal junctions at the single-molecule level has been developed to test the effects of the junction configuration on the thermopower properties. The method is based on dynamic switching between (thermo)electric current and thermoelectric voltage measurements. Two model systems, 4,4′-bipyridine (1) and 4,4′-diaminostilbene (2), have been scrutinized. Single-molecule conductance (G) and thermopower (S) values were obtained for the two most probable junction configurations of 1 and 2, each having two different conductance values, GH (high) and GL (low), where GH > GL. Thermopower values of S(GH) =6.4 ± 1.5 μV K-1 and S(GL) =7.0 ± 1.6 μV K-1 were obtained for the molecular junctions of 1 and values of S(GH) = +14.4 ± 3.5 μV K-1 and S(GL) = +10.4 ± 3.0 μV K-1 were obtained for the molecular junctions of 2. The GH and S(GH) values for 1 and 2 are consistent with previously reported results. Thermopower values obtained simultaneously with conductance measurements for both configurations of 2 during junction evolution are reported for the first time. This work shows that, within experimental error, both S values are the same for each molecule, i.e., S(GH) ≈ S(GL), and they do not depend on the molecular junction configuration. This is an important finding, which supports claims that thermopower is an intensive property of matter. DFT calculations of transmission functions combined with a non-equilibrium Green's function approach complete this study.
Název v anglickém jazyce
Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?
Popis výsledku anglicky
A new experimental method for the simultaneous determination of the electric and thermoelectric properties of metal-molecule-metal junctions at the single-molecule level has been developed to test the effects of the junction configuration on the thermopower properties. The method is based on dynamic switching between (thermo)electric current and thermoelectric voltage measurements. Two model systems, 4,4′-bipyridine (1) and 4,4′-diaminostilbene (2), have been scrutinized. Single-molecule conductance (G) and thermopower (S) values were obtained for the two most probable junction configurations of 1 and 2, each having two different conductance values, GH (high) and GL (low), where GH > GL. Thermopower values of S(GH) =6.4 ± 1.5 μV K-1 and S(GL) =7.0 ± 1.6 μV K-1 were obtained for the molecular junctions of 1 and values of S(GH) = +14.4 ± 3.5 μV K-1 and S(GL) = +10.4 ± 3.0 μV K-1 were obtained for the molecular junctions of 2. The GH and S(GH) values for 1 and 2 are consistent with previously reported results. Thermopower values obtained simultaneously with conductance measurements for both configurations of 2 during junction evolution are reported for the first time. This work shows that, within experimental error, both S values are the same for each molecule, i.e., S(GH) ≈ S(GL), and they do not depend on the molecular junction configuration. This is an important finding, which supports claims that thermopower is an intensive property of matter. DFT calculations of transmission functions combined with a non-equilibrium Green's function approach complete this study.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry A
ISSN
2050-7488
e-ISSN
2050-7496
Svazek periodika
9
Číslo periodika v rámci svazku
32
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
17512-17520
Kód UT WoS článku
000683040900001
EID výsledku v databázi Scopus
2-s2.0-85113145507