Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Relative influence of helium and nitrogen carrier gases on analyte ion branching ratios in SIFT-MS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00556674" target="_blank" >RIV/61388955:_____/22:00556674 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hdl.handle.net/11104/0330786" target="_blank" >http://hdl.handle.net/11104/0330786</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijms.2022.116835" target="_blank" >10.1016/j.ijms.2022.116835</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Relative influence of helium and nitrogen carrier gases on analyte ion branching ratios in SIFT-MS

  • Popis výsledku v původním jazyce

    Nitrogen carrier gas is now being used more frequently for SIFT-MS analyses than helium for the reasons of cost and supply. Yet the extensive kinetics database required has largely been compiled using data obtained in helium carrier gas. This paper asks the question: can the helium-based kinetics library be used with confidence for analyses in nitrogen carrier gas? To investigate this, the rate coefficients and product ion distributions for the reactions of H3O+, NO+ and O2+● with three monoterpenes, β-pinene, camphene and (R)-(+)-limonene, and the specific reactions (a) H3O+ with 2-propanol, (b) O2+● with acetone, (c) NO+ with acetaldehyde and (d) NO+ with 2,3-butanedione have been explored in both helium and nitrogen carrier gases using a Profile 3 SIFT-MS instrument. These reactions were chosen because several primary reaction mechanisms are involved, including proton transfer (a), charge transfer (b), parallel hydride ion transfer and adduct ion formation (c) and parallel charge transfer and adduct ion formation (d). The detailed results show that for the diverse monoterpene reactions that have multiple product ions and for the pure bimolecular reactions (a) and (b), the reaction kinetics in both helium and nitrogen carrier gases are essentially identical. However, reactions (c) and (d) in which adduct ions are partially formed exhibit a slow carrier gas pressure dependence in helium, but a much greater carrier gas pressure dependence in nitrogen, and different product ion distributions. The conclusion is drawn that for pure bimolecular reactions, e.g. (a) and (b), the helium-obtained kinetics data can be used with confidence for trace gas analysis by SIFT-MS in nitrogen carrier gas, whereas kinetics data for ion-molecule reactions that involve adduct ion formation must be obtained by measurements under the specific pressure (and temperature) of the nitrogen carrier gas at which gas analyses are to be performed.

  • Název v anglickém jazyce

    Relative influence of helium and nitrogen carrier gases on analyte ion branching ratios in SIFT-MS

  • Popis výsledku anglicky

    Nitrogen carrier gas is now being used more frequently for SIFT-MS analyses than helium for the reasons of cost and supply. Yet the extensive kinetics database required has largely been compiled using data obtained in helium carrier gas. This paper asks the question: can the helium-based kinetics library be used with confidence for analyses in nitrogen carrier gas? To investigate this, the rate coefficients and product ion distributions for the reactions of H3O+, NO+ and O2+● with three monoterpenes, β-pinene, camphene and (R)-(+)-limonene, and the specific reactions (a) H3O+ with 2-propanol, (b) O2+● with acetone, (c) NO+ with acetaldehyde and (d) NO+ with 2,3-butanedione have been explored in both helium and nitrogen carrier gases using a Profile 3 SIFT-MS instrument. These reactions were chosen because several primary reaction mechanisms are involved, including proton transfer (a), charge transfer (b), parallel hydride ion transfer and adduct ion formation (c) and parallel charge transfer and adduct ion formation (d). The detailed results show that for the diverse monoterpene reactions that have multiple product ions and for the pure bimolecular reactions (a) and (b), the reaction kinetics in both helium and nitrogen carrier gases are essentially identical. However, reactions (c) and (d) in which adduct ions are partially formed exhibit a slow carrier gas pressure dependence in helium, but a much greater carrier gas pressure dependence in nitrogen, and different product ion distributions. The conclusion is drawn that for pure bimolecular reactions, e.g. (a) and (b), the helium-obtained kinetics data can be used with confidence for trace gas analysis by SIFT-MS in nitrogen carrier gas, whereas kinetics data for ion-molecule reactions that involve adduct ion formation must be obtained by measurements under the specific pressure (and temperature) of the nitrogen carrier gas at which gas analyses are to be performed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-25486S" target="_blank" >GA21-25486S: Hmotnostní spektrometrie v proudové a driftové trubici s vybranými ionty s negativními ionty a dusíkem jako nosným plynem</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Mass Spectrometry

  • ISSN

    1387-3806

  • e-ISSN

    1873-2798

  • Svazek periodika

    476

  • Číslo periodika v rámci svazku

    JUN 2022

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    116835

  • Kód UT WoS článku

    000790927200001

  • EID výsledku v databázi Scopus

    2-s2.0-85127008054